The performance of an optical time domain reflectometer(OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR(SSOTDR) is proposed, the theoretical basis and simulation r...The performance of an optical time domain reflectometer(OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR(SSOTDR) is proposed, the theoretical basis and simulation results of the new method are given, and the problem of direct application of bipolar spread spectrum codes to OTDR and despreading in the optical domain are solved. The simulation results show the feasibility of the SSOTDR, which exhibits better dynamic range reported to date for a practical long-haul OTDR system without using conventional average technique.展开更多
基金supported by the National Natural Science Foundation of China (No.61735011)the Science and Technology Research Project of Hebei University (No.QN2017141)the Key Research and Development Program of Hebei Province (No.19251703D)。
文摘The performance of an optical time domain reflectometer(OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR(SSOTDR) is proposed, the theoretical basis and simulation results of the new method are given, and the problem of direct application of bipolar spread spectrum codes to OTDR and despreading in the optical domain are solved. The simulation results show the feasibility of the SSOTDR, which exhibits better dynamic range reported to date for a practical long-haul OTDR system without using conventional average technique.