Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses o...Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.展开更多
Kechun 140103 is a new spring wheat variety with high and stable yield bred by Keshan Branch of Heilongjiang Academy of Agricultural Sciences.This paper summarizes the breeding process,characteristics,yield performanc...Kechun 140103 is a new spring wheat variety with high and stable yield bred by Keshan Branch of Heilongjiang Academy of Agricultural Sciences.This paper summarizes the breeding process,characteristics,yield performance and cultivation techniques of Kechun 140103,in order to promote the popularization and application of the variety.展开更多
Changes of ACC and MACC levels, ACC synthase activity as well as ethylene production in the leaves of two spring wheat (Triticum aestivum L.) cultivars 8139 (with relatively low drought-resistance) and 504 (with relat...Changes of ACC and MACC levels, ACC synthase activity as well as ethylene production in the leaves of two spring wheat (Triticum aestivum L.) cultivars 8139 (with relatively low drought-resistance) and 504 (with relatively high drought-resistance) during water stress were determined. The levels of ACC and MACC in both cultivars decreased in the first 24 It of water stress and increased in the second 24 It while the activities of ACC synthase increased continuously throughout the entire period of treatment (48 h), As water stress progressed, ethylene production decreased continuously in cv. 8139 but remarkably increased earlier and decreased later in the cv. 504. Moreover, the decrease in RWC of stressed leaves was greater and the changes in ACC and MACC levels as well as ACC synthase activity were higher in the drought-sensitive cv. 8139 than in the drought-resistant cv, 504 during water stress. The levels of ACC and MACC, activities of ACC synthase and productions of ethylene in the stressed leaves in two cultivars were significantly altered by the application of MGBG (an inhibitor of SAMDC) and AOA (an inhibitor of ACC synthase) where their effects on these items were almost opposite. They were increased by the former inhibitor but reduced by the latter. All of these results suggested that the level of ethylene production in plants did not depend on the level of ACC during water stress. The increase in the level of ethylene in the drought-resistant cultivar during the earlier period of water stress might be a phenomenon of adaptation to water stress and be correlated with the development of the drought-tolerance in plants and playing role in the transduction of stress signal. The role of MACC, however, was primarily in the regulation of ethylene production under water stress.展开更多
In order to investigate the effect of acid rain on photosynthetic characteristics of spring wheat,spring wheat at the jointing stage was sprayed with simulated acid rain at different pH levels of 1.5,2.5,3.5,4.5 and 5...In order to investigate the effect of acid rain on photosynthetic characteristics of spring wheat,spring wheat at the jointing stage was sprayed with simulated acid rain at different pH levels of 1.5,2.5,3.5,4.5 and 5.6,and then,the photosynthetic parameters of spring wheat leaf was monitored.The results indicated that the pH value of simulated acid rain was positively and very significantly correlated with the net photosynthetic rate,stomata conductance,transpiration rate,water use efficiency and the chlorophyll relative content,whereas very significantly and negatively correlated with intercellular CO2 concentration.Due to acid rain,the net photosynthetic rate,stomata conductance,transpiration rate and the chlorophyll relative content decreased by 4.08%-67.04%,17.44%-58.44%,12.08%-48.08% and 12.16%-37.23% respectively,while intercellular CO2 concentration increased by 9.01%-14.29%.After simulated treatment with acid rain,the net photosynthetic rate had high significant positive correlation with stomata conductance,transpiration rate,water use efficiency,and the chlorophyll relative content,but high significant negative correlation with intercellular CO2 concentration.At the same time,transpiration rate was observed to be very significantly and positively correlated to stomata conductance and chlorophyll relative content,being significantly and positively correlated with water use efficiency,and very significantly and negatively correlated with intercellular CO2 concentration.In a word,the influence of simulated acid rain on photosynthetic characteristics of spring wheat leaf became more and more obvious with the increase of hydrogen ion concentration.展开更多
The authors constructed a simplified model of spring wheat (Triticum aestivum L.) carbon assimilation and dry matter accumulation (DMA) process which consisted of two independent variables, day length (L) and total...The authors constructed a simplified model of spring wheat (Triticum aestivum L.) carbon assimilation and dry matter accumulation (DMA) process which consisted of two independent variables, day length (L) and total daily radiation (TDR). Leaf water potential (Ψ) was incorporated into the simplified growth model based on the assumption that both light use efficiency (α) and CO 2 conductance of assimilation (g c) were depressed by water limitation. Finally,Ψ was estimated from a regression equation in which the independent variables were relative soil water content in the upper 80 cm (θ R,80 ), ambient temperature (T a), vapor pressure deficit (VPD), the cumulative leaf water potential below thresholds of -1.5 MPa (Ψ c,1.5 ). Some applications in research program of field experiment of atmosphere_land surface processes in Heihe River region were tested. The simulated data agreed well with the data observed at Linze oasis in 1989 for various levels of water supply and at Zhangye oasis in 1992 in the field. The analysis and simulation using the model demonstrated that the simplified growth model could describe very well the DMA process of spring wheat with and without water limitation in the region of HEIFE (Heihe field experiment).展开更多
[Objective]The paper aimed to study effect of shallow groundwater at different depths on crop water requirement and crop evaporation in spring wheat field.[Method]Five treatments of shallow groundwater table at differ...[Objective]The paper aimed to study effect of shallow groundwater at different depths on crop water requirement and crop evaporation in spring wheat field.[Method]Five treatments of shallow groundwater table at different depth were designed to do evaporation experiment for spring wheat in 2008-2009.[Result]The groundwater at different depths had great impact on crop growth and field evaporation;its supply accounted for 0-52% of actual evapotranspiration.Atmospheric evaporation and crop rooting depth were the major factors to affect the uptake of groundwater at shallow table,and the supply of deep groundwater was controlled by groundwater table.[Conclusion]The study reveled the pattern of evapotranspiration of spring wheat and evaporation of shallow groundwater at different depth,in order to supply basis for the rational and effective utilization of shallow groundwater as well as optimization of the irrigation scheduling for spring wheat.展开更多
In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring...In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.展开更多
To investigate effects of Zn on Cd uptake by spring wheat (Triticum aestivum, L.) in solution culture, long-time hydroponic experiment (1 month) (Experiment 1) and short-time Cd isotope (109Cd) tracing experiment (24 ...To investigate effects of Zn on Cd uptake by spring wheat (Triticum aestivum, L.) in solution culture, long-time hydroponic experiment (1 month) (Experiment 1) and short-time Cd isotope (109Cd) tracing experiment (24 h) (Experiment 2) were conducted. In Experiment 1, spring wheat (cv. Brookton) was grown in nutrient solution at uniform cadmium concentration of 20μ mol/L and 10 zinc concentrations (0, 1, 5, 10, 20, 100, 200, 500, 1000, 2000 μ mol/L). In Experiment 2, spring wheat seedlings,pre-cultivated in complete nutrient solution, were treated with 109Cd of uniform activity and the same series of Zn concentrations as those in Experiment 1 for 24 h. Cd concentrations in shoots and roots in Experiment 1 increased marginally but not consistently with Zn increasing at Zn rates of 1~200 μmol/L, and then decreased significantly at high rates (>200 μ mol/L). In Experiment 2, the response of 109Cd activities in shoots and roots to increasing Zn was greatly similar to the response of Cd concentrations to Zn increasing in Experiment 1. The results of the two experiments indicated that the short-time and long-time exposure of spring wheat to Zn had similar effects on Cd accumulation.展开更多
A field experiment was conducted during the 2002/2003 cropping season of winter wheat (Triticum aestivum) and spring maize (Zea mays) to evaluate the effect of limited single drip irrigation on the yield and water...A field experiment was conducted during the 2002/2003 cropping season of winter wheat (Triticum aestivum) and spring maize (Zea mays) to evaluate the effect of limited single drip irrigation on the yield and water use of both crops under relay intercropping in a semi-arid area of northwestern China. A controlled 35 mm single irrigation, either early or late, was applied to each crop at a certain growth stage. Soil water, leaf area, final grain yield and yield components such as the thousand-grain weight, length of spike, fertile spikelet number, number of grains per spike, and grain weight per spike were measured, and water use efficiency and leaf area index were calculated for the irrigated and non-irrigated relay intercropping treatments and sole cropping controls. The results showed that yield, yield components, water use efficiency, and leaf area index in the relay intercropping treatments were affected by limited single drip irrigation during various growth stages of wheat and maize. The total yields in the relay intercropping treatment irrigated during the heading stage of wheat and the heading and anthesis stage of maize were the highest among all the treatments, followed by that irrigated during the anthesis stage of wheat and silking stage of maize; so was the water use efficiency. Significant differences occurred in most yield components between the irrigated and non-irrigated relay-intercropping treatments. The dynamics of the leaf area index in the relay-intercropped or solely cropped wheat and maize showed a type of single-peak pattern, whereas that of the relay intercropping treatments showed a type of double-peak pattern. Appropriately, limited single irrigation and controlled soil water content level could result in higher total yield, water use efficiency, and leaf area index, and improved yield components in relay intercropping. This practice saved the amount of water used for irrigation and also increased the yield. Therefore, heading stage of wheat and heading and anthesis stage of maize were suggested to be the optimum limited single irrigation time for relay-intercropped wheat and maize in the semi-arid area.展开更多
Available water and fertilizer have been the main limiting factors for yields of spring wheat, which occupies a large area of the black soil zone in northeast China; thus, the need to set up appropriate models for sce...Available water and fertilizer have been the main limiting factors for yields of spring wheat, which occupies a large area of the black soil zone in northeast China; thus, the need to set up appropriate models for scenario analysis of cropping system models has been increasing. The capability of CropSyst, a cropping system simulation model, to simulate spring wheat growth of a widely grown spring cultivar, 'Longmai 19', in the black soil zone in northeast China under different water and nitrogen regimes was evaluated. Field data collected from a rotation experiment of three growing seasons (1992-1994) were used to calibrate and validate the model. The model was run for 3 years by providing initial conditions at the beginning of the rotation without reinitializing the model in later years in the rotation sequence. Crop input parameters were set based on measured data or taken from CropSyst manual. A few cultivar-specific parameters were adjusted within a reasonable range of fluctuation. The results demonstrated the robustness of CropSyst for simulating evapotranspiration, aboveground biomass, and grain yield of 'Longmai 19' spring wheat with the root mean square errors being 7%, 13% and 13% of the observed means for evapotranspiration (ET), grain yield and aboveground biomass, respectively. Although CropSyst was able to simulate spring production reasonably well, further evaluation and improvement of the model with a more detailed field database was desirable for agricultural systems in northeast China.展开更多
Biosolids were applied with urea to produce a granulated organo-mineral fertiliser (OMF) for application by farm fertiliser equipment to a range of agricultural crops. The recommended rates of nitrogen, phosphate and ...Biosolids were applied with urea to produce a granulated organo-mineral fertiliser (OMF) for application by farm fertiliser equipment to a range of agricultural crops. The recommended rates of nitrogen, phosphate and potash were calculated for the test crops using “The Fertiliser Manual”, which assesses the nutrient requirement based on previous cropping, rainfall and soil index. The OMF produced similar crop yields compared to ammonium nitrate fertiliser when applied as a top-dressing to winter wheat, forage maize and grass cut for silage in the cropping years 2010 to 2014. In 2012 the grain yield of spring barley top-dressed with OMF was significantly lower than the conventional fertiliser treatment, due to dry conditions following application. For this reason it is recommended that OMF is incorporated into the seedbed for spring sown crops and The Safe Sludge Matrix guidelines followed. The experimental work presented shows that OMF can be used in sustainable crop production systems as a source of nitrogen and phosphorus for a range of agricultural crops.展开更多
Fertilization management to improve quality properties of spring wheat cultivars has received little research attention inNortheast China. In this study, the effects of different fertilization management regimes on th...Fertilization management to improve quality properties of spring wheat cultivars has received little research attention inNortheast China. In this study, the effects of different fertilization management regimes on the quality properties of springwheat cultivar New Kehan 9 (Triticum aestivum L.) were investigated for two years. The results showed that fertilizationconsistently increased wheat yield, and the highest yield was obtained with addition of N, P and NPK fertilizers. The NPKtreatment resulted in 50% more yield than the unfertilized plot. The average increases in protein content from NPK and NP atseeding + N at anthesis over no fertilization and NP fertilizers at seeding were 2.7% and 0.90% respectively. The highestprotein yields were achieved in NPK and NPK + N treatments, and the lowest protein yield was observed in the no fertilizertreatment due to both low protein content and grain yield. Fertilization increased gliadins content, but decreased gluteninscontent, thus the gliadins/glutenins ratios were higher in the fertilization treatments. The most obvious effect of fertilizationon kernel quality was the significant increase of hardness percentage. Although the dough rheological properties werenot strongly changed by fertilization, dry gluten and wet gluten were significantly increased, and the highest breadvolume and bread score were found in the NPK treatment in both years. The application of 3% urea at anthesis, or applying45 kg ha-1 of potassium sulphate at seeding, with urea and diammonium phosphate as basal applications, significantlyincreased protein yield and improved quality properties of this wheat cultivar.Key words: Fertilization, Yield, Protein contents, Protein fractions, Quality, Spring Wheat展开更多
Assessing the impacts of climate variability on agricultural productivity at regional, national or global scale is essential for defining adaptation and mitigation strategies. We explore in this study the potential ch...Assessing the impacts of climate variability on agricultural productivity at regional, national or global scale is essential for defining adaptation and mitigation strategies. We explore in this study the potential changes in spring wheat yields at Swift Current and Melfort, Canada, for different sowing windows under projected climate scenarios (i.e., the representative concentration pathways, RCP4.5 and RCP8.5). First, the APSIM model was calibrated and evaluated at the study sites using data from long term experimental field plots. Then, the impacts of change in sowing dates on final yield were assessed over the 2030-2099 period with a 1990-2009 baseline period of observed yield data, assuming that other crop management practices remained unchanged. Results showed that the performance of APSIM was quite satisfactory with an index of agreement of 0.80, R2 of 0.54, and mean absolute error (MAE) and root mean square error (RMSE) of 529 kg/ha and 1023 kg/ha, respectively (MAE = 476 kg/ha and RMSE = 684 kg/ha in calibration phase). Under the projected climate conditions, a general trend in yield loss was observed regardless of the sowing window, with a range from ?-24% to -94% depending on the site and the RCP, and noticeable losses during the 2060s and beyond (increasing CO2 effects being excluded). Smallest yield losses obtained through earlier possible sowing date (i.e., mid-April) under the projected future climate suggested that this option might be explored for mitigating possible adverse impacts of climate variability. Our findings could therefore serve as a basis for using APSIM as a decision support tool for adaptation/mitigation options under potential climate variability within Western Canada.展开更多
Resistant cultivar deployment is an effective method for cereal aphid management.Under greenhouse conditions,preliminary antibiosis resistance screening was conducted on 114 Ethiopian and 22 Chinese spring wheat acces...Resistant cultivar deployment is an effective method for cereal aphid management.Under greenhouse conditions,preliminary antibiosis resistance screening was conducted on 114 Ethiopian and 22 Chinese spring wheat accessions.After performing a bioassay to determine antibiosis resistance,aphid feeding behaviour and phenolic acid content analyses were performed on the aphid resistant wheat accessions by electrical penetration graph(EPG)and high performance liquid chromatography(HPLC),respectively.Among the wheat accessions,two high resistances,27moderate-resistances,and 35 low-resistances to Sitobion miscanthi were identified.The antibiosis resistance test showed prolonged pre-adult and pre-reproductive periods,shorter reproductive periods,lower fecundity,an intrinsic rate(rm)of increase,and a finite rate(λ)of increase of S.miscanthi on Lunxuan 145,Wane,Lunxuan 6,204511,Lunxuan 103and 5215 than those on the aphid-susceptible accession Beijing 837.The changes for the parameters of aphid feeding behaviour,including spending a longer time in the penetration and phloem salivation phases and less time in the phloem sap-feeding phase on the resistant wheat accessions,indicated that the aphid resistance may occur during the phloem phase and may be due to difficulties in the mechanical probing of the mesophyll cells.Additionally,the HPLC analysis showed higher contents of:1)ferulic acid in Lunxuan 145,Lunxuan 103 and Lunxuan 6;2)p-coumaric acid in Lunxuan145;3)vanillic acid in Lunxuan 145,Wane and Lunxuan 6;4)syringic acid in Lunxuan 103;and 5)caffeic acid in 5215.The contents of some phenolic acids within wheat leaves,such as p-courmaric acid and vanillic acid showed significant positive correlation with the duration of aphid development,but negative correlation with the aphid fecundity.The concentrations of these acids may be the causes of antibiosis resistance to S.miscanthi.The identification of grain aphid-resistant wheat accessions in our study will be helpful in future breeding program for pest control.展开更多
The yellowed-leaf rate is one of the important variables in simulation models for thegrowth of spring wheat. Based on the field experiments (1985-1988), the evolution of yellowed-leafrate of spring wheat is analyzed. ...The yellowed-leaf rate is one of the important variables in simulation models for thegrowth of spring wheat. Based on the field experiments (1985-1988), the evolution of yellowed-leafrate of spring wheat is analyzed. The functional relationship between the yellowing process of greenleaves and the development stages of spring wheat is established. Based on modelling and correctingfor the yellowing proass of green leaves affected by temperature and moisture, the synthetic modelfor simulating the dynaniical evolution of yellowed-leaf rate is constructed. The numerical experi-inents show that the result of the modelling is satisfactory.展开更多
The experimental plants were grown in open-top chamber and exposed to 0.26 ppm of ozone for six hrs. per day from seedling stage till ripening. The results showed that the height of plants, rates of earing, flowering,...The experimental plants were grown in open-top chamber and exposed to 0.26 ppm of ozone for six hrs. per day from seedling stage till ripening. The results showed that the height of plants, rates of earing, flowering, grain forming, ripening and the weight/1000 kernels all declined in fumigated plants in comparison with the controls. The yield lost 76.7%. The actual actions of ozone were that it caused foliar injury and chlorophyll destruction accelerating leaf senescence, reduction of assimilation products. O3 was unfavorable injurious to transport and accumulation of substances to the grains after flowering.展开更多
In the model developed in this paper, taking the characters and requirements of meteorological services into account, some conventional meteorological observations which are easy to be obtained have been ch.osen, and ...In the model developed in this paper, taking the characters and requirements of meteorological services into account, some conventional meteorological observations which are easy to be obtained have been ch.osen, and mathematical equations describing micro-growth processes of crops have been established on the basis of the field experiments, laboratorial analysis and computer's modelling tests with time interval of ten-days for several years (1987-1989), in accordance with the known biological and physical rules and corresponding reference literatures. It is a preliminary simplified simulation model of spring wheat growth in optimal water and nutrient conditions. The field experiments show that simulation results of this simplified model are satisfactory. The potential operational application and theoretical sense are significant in the meteorological forecast of yield and in the assessment of influences of climatic change on agriculture.展开更多
Somaclonal variation of calli and regenerated plants of spring wheat were detected by using technique RAPD in the study. Calli at different culture stages and regenerated plants derived from young spikes and immature ...Somaclonal variation of calli and regenerated plants of spring wheat were detected by using technique RAPD in the study. Calli at different culture stages and regenerated plants derived from young spikes and immature embryos were used as materials. Molecular variation could be reflected from electrophoresis pattern of RAPD fragments at different culture stage in calli, and in regenerated plants derived from different explants, even no phenotype variations were found. Somaclonal variation in calli and in regenerated plants appeared regularly: A higher frequency of variation in hybrids F2 was detected than that of the cultivar that is stable genetically. High variation frequency of RAPD fragments appeared in calli when cultured 75 days. The identical variations of RAPD fragments were observed in calli and in the regenerated plants induced from different genotype or explants. The variation frequency detected is higher in regenerated plants than that of in calli. RAPD could be applied easily and simply to determine variation in level of DNA at each stage cultured in vitro.展开更多
Agricultural production is highly dependent on the climatic variability of the specific regions. Differential climatic and soil conditions bring about changes in yield, quality of crops thus affecting the economy. Thi...Agricultural production is highly dependent on the climatic variability of the specific regions. Differential climatic and soil conditions bring about changes in yield, quality of crops thus affecting the economy. This study evaluated the impact of variability in different climatic factors keeping the other factors constant on spring wheat production in North Dakota from 2007 to 2011. The spring wheat yield mainly depends on the climatic changes during growing periods April to September. Average maximum air temperature was significantly different from April to September except June from 2007 to 2011. High average minimum and maximum air temperatures during planting time increase yield and planting area for 2010. In 2011, low mean soil temperature, excess rainfall in April caused low yield of spring wheat. The unmitigated climate variability will result in declines in yields. So, adoption of sustainable agriculture practices helps the farmers to develop the different practices for their farms.展开更多
基金supported by the National Key Research and Development Program of China (2017YFD0300408)the Major Research Projects of Anhui (202003b06020021)the Graduate Innovation Fund of Anhui Agricultural University (2020 ysj-5)。
文摘Late spring cold(LSC) occurred in the reproductive period of wheat impairs spike and floret differentiation during the reproductive period,when young spikelets are very cold-sensitive.However,under LSC,the responses of wheat spikelets at various positions,leaves,and stems and the interactions between them at physiological levels remain unclear.In the present study,two-year treatments at terminal spikelet stage under two temperatures(2 C,-2 C) and durations(1,2,and 3 days) were imposed in an artificial climate chamber to compare the effects of LSC on grain number and yield in the wheat cultivars Yannong 19(YN19,cold-tolerant) and Xinmai 26(XM26,cold-sensitive).The night temperature regimes were designed to reproduce natural temperature variation.LSC delayed plant growth and inhibited spike and floret differentiation,leading to high yield losses in both cultivars.LSC reduced dry matter accumulation(DMA,g) in spikes,stems,and leaves,reducing the DMA ratios of the spike to leaf and spike to stem.Plant cell wall invertase(CWINV) activity increased in upper and basal spikelets in YN19,whereas CWINV increased in middle spikelets in XM26.Under LSC,soluble sugar and glucose were transported and distributed mainly in upper and basal spikelets for glume and rachis development,so that spike development was relatively complete in YN19,whereas the upper and basal spikelets were severely damaged and most of the glumes in middle spikelets were relatively completely developed in XM26,resulting in pollen abortion mainly in upper and basal spikelets.The development of glumes and rachides was influenced and grain number per spike was decreased after LSC,with kernels present mainly in middle spikelets.Overall,reduced total DMA and dry matter partitioning to spikes under LSC results in poor spikelet development,leading to high losses of grain yield.
基金Supported by Keshan Comprehensive Test Station of National Wheat Industry Research System (CARS-03-54)Research Funds for Heilongjiang Provincial Research Institutes (CZKYF2021B005)Modern Agricultural Industry Technology Wheat Collaborative Innovation and Promotion System of Heilongjiang Province.
文摘Kechun 140103 is a new spring wheat variety with high and stable yield bred by Keshan Branch of Heilongjiang Academy of Agricultural Sciences.This paper summarizes the breeding process,characteristics,yield performance and cultivation techniques of Kechun 140103,in order to promote the popularization and application of the variety.
文摘Changes of ACC and MACC levels, ACC synthase activity as well as ethylene production in the leaves of two spring wheat (Triticum aestivum L.) cultivars 8139 (with relatively low drought-resistance) and 504 (with relatively high drought-resistance) during water stress were determined. The levels of ACC and MACC in both cultivars decreased in the first 24 It of water stress and increased in the second 24 It while the activities of ACC synthase increased continuously throughout the entire period of treatment (48 h), As water stress progressed, ethylene production decreased continuously in cv. 8139 but remarkably increased earlier and decreased later in the cv. 504. Moreover, the decrease in RWC of stressed leaves was greater and the changes in ACC and MACC levels as well as ACC synthase activity were higher in the drought-sensitive cv. 8139 than in the drought-resistant cv, 504 during water stress. The levels of ACC and MACC, activities of ACC synthase and productions of ethylene in the stressed leaves in two cultivars were significantly altered by the application of MGBG (an inhibitor of SAMDC) and AOA (an inhibitor of ACC synthase) where their effects on these items were almost opposite. They were increased by the former inhibitor but reduced by the latter. All of these results suggested that the level of ethylene production in plants did not depend on the level of ACC during water stress. The increase in the level of ethylene in the drought-resistant cultivar during the earlier period of water stress might be a phenomenon of adaptation to water stress and be correlated with the development of the drought-tolerance in plants and playing role in the transduction of stress signal. The role of MACC, however, was primarily in the regulation of ethylene production under water stress.
基金Supported by Scientific Research Special Fund for Public Welfare Industry (Meteorology) (GY-HY200806021)Drought Fund Project of Lanzhou Arid Meteorology Institute,China Meteorological Administration (IAM200921)
文摘In order to investigate the effect of acid rain on photosynthetic characteristics of spring wheat,spring wheat at the jointing stage was sprayed with simulated acid rain at different pH levels of 1.5,2.5,3.5,4.5 and 5.6,and then,the photosynthetic parameters of spring wheat leaf was monitored.The results indicated that the pH value of simulated acid rain was positively and very significantly correlated with the net photosynthetic rate,stomata conductance,transpiration rate,water use efficiency and the chlorophyll relative content,whereas very significantly and negatively correlated with intercellular CO2 concentration.Due to acid rain,the net photosynthetic rate,stomata conductance,transpiration rate and the chlorophyll relative content decreased by 4.08%-67.04%,17.44%-58.44%,12.08%-48.08% and 12.16%-37.23% respectively,while intercellular CO2 concentration increased by 9.01%-14.29%.After simulated treatment with acid rain,the net photosynthetic rate had high significant positive correlation with stomata conductance,transpiration rate,water use efficiency,and the chlorophyll relative content,but high significant negative correlation with intercellular CO2 concentration.At the same time,transpiration rate was observed to be very significantly and positively correlated to stomata conductance and chlorophyll relative content,being significantly and positively correlated with water use efficiency,and very significantly and negatively correlated with intercellular CO2 concentration.In a word,the influence of simulated acid rain on photosynthetic characteristics of spring wheat leaf became more and more obvious with the increase of hydrogen ion concentration.
文摘The authors constructed a simplified model of spring wheat (Triticum aestivum L.) carbon assimilation and dry matter accumulation (DMA) process which consisted of two independent variables, day length (L) and total daily radiation (TDR). Leaf water potential (Ψ) was incorporated into the simplified growth model based on the assumption that both light use efficiency (α) and CO 2 conductance of assimilation (g c) were depressed by water limitation. Finally,Ψ was estimated from a regression equation in which the independent variables were relative soil water content in the upper 80 cm (θ R,80 ), ambient temperature (T a), vapor pressure deficit (VPD), the cumulative leaf water potential below thresholds of -1.5 MPa (Ψ c,1.5 ). Some applications in research program of field experiment of atmosphere_land surface processes in Heihe River region were tested. The simulated data agreed well with the data observed at Linze oasis in 1989 for various levels of water supply and at Zhangye oasis in 1992 in the field. The analysis and simulation using the model demonstrated that the simplified growth model could describe very well the DMA process of spring wheat with and without water limitation in the region of HEIFE (Heihe field experiment).
基金Supported by Science Research Project of Ningxia Higher Education~~
文摘[Objective]The paper aimed to study effect of shallow groundwater at different depths on crop water requirement and crop evaporation in spring wheat field.[Method]Five treatments of shallow groundwater table at different depth were designed to do evaporation experiment for spring wheat in 2008-2009.[Result]The groundwater at different depths had great impact on crop growth and field evaporation;its supply accounted for 0-52% of actual evapotranspiration.Atmospheric evaporation and crop rooting depth were the major factors to affect the uptake of groundwater at shallow table,and the supply of deep groundwater was controlled by groundwater table.[Conclusion]The study reveled the pattern of evapotranspiration of spring wheat and evaporation of shallow groundwater at different depth,in order to supply basis for the rational and effective utilization of shallow groundwater as well as optimization of the irrigation scheduling for spring wheat.
基金supported by the National Nature Science Foundation of China (31300328, 31200335, 31470496)the "111" Program from State Administration of Foreign Experts Affairs (SAFEA) & Ministry of Education (MOE), China (2007B051)+1 种基金the Fundamental Research Funds for the Central Universities, China (lzujbky-2012-97, lzujbky-2015-ct02, lzujbky-2016-86)the funding from the State Key Laboratory of Grassland Agro-ecosystem in Lanzhou University, China
文摘In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.
基金Project supported by the National Natural Science Foundation of China (No. 40335046) and the "Recruiting Outstanding Overseas Chinese Scientists" Scheme of the Chinese Academy of Sciences, China
文摘To investigate effects of Zn on Cd uptake by spring wheat (Triticum aestivum, L.) in solution culture, long-time hydroponic experiment (1 month) (Experiment 1) and short-time Cd isotope (109Cd) tracing experiment (24 h) (Experiment 2) were conducted. In Experiment 1, spring wheat (cv. Brookton) was grown in nutrient solution at uniform cadmium concentration of 20μ mol/L and 10 zinc concentrations (0, 1, 5, 10, 20, 100, 200, 500, 1000, 2000 μ mol/L). In Experiment 2, spring wheat seedlings,pre-cultivated in complete nutrient solution, were treated with 109Cd of uniform activity and the same series of Zn concentrations as those in Experiment 1 for 24 h. Cd concentrations in shoots and roots in Experiment 1 increased marginally but not consistently with Zn increasing at Zn rates of 1~200 μmol/L, and then decreased significantly at high rates (>200 μ mol/L). In Experiment 2, the response of 109Cd activities in shoots and roots to increasing Zn was greatly similar to the response of Cd concentrations to Zn increasing in Experiment 1. The results of the two experiments indicated that the short-time and long-time exposure of spring wheat to Zn had similar effects on Cd accumulation.
基金the National Key Basic Research Special Foundation (NKBRSF) of China (No.G2000018603)and the National High Technology Research and Development Program (863 Program) of China (No.2002AA2Z4191).
文摘A field experiment was conducted during the 2002/2003 cropping season of winter wheat (Triticum aestivum) and spring maize (Zea mays) to evaluate the effect of limited single drip irrigation on the yield and water use of both crops under relay intercropping in a semi-arid area of northwestern China. A controlled 35 mm single irrigation, either early or late, was applied to each crop at a certain growth stage. Soil water, leaf area, final grain yield and yield components such as the thousand-grain weight, length of spike, fertile spikelet number, number of grains per spike, and grain weight per spike were measured, and water use efficiency and leaf area index were calculated for the irrigated and non-irrigated relay intercropping treatments and sole cropping controls. The results showed that yield, yield components, water use efficiency, and leaf area index in the relay intercropping treatments were affected by limited single drip irrigation during various growth stages of wheat and maize. The total yields in the relay intercropping treatment irrigated during the heading stage of wheat and the heading and anthesis stage of maize were the highest among all the treatments, followed by that irrigated during the anthesis stage of wheat and silking stage of maize; so was the water use efficiency. Significant differences occurred in most yield components between the irrigated and non-irrigated relay-intercropping treatments. The dynamics of the leaf area index in the relay-intercropped or solely cropped wheat and maize showed a type of single-peak pattern, whereas that of the relay intercropping treatments showed a type of double-peak pattern. Appropriately, limited single irrigation and controlled soil water content level could result in higher total yield, water use efficiency, and leaf area index, and improved yield components in relay intercropping. This practice saved the amount of water used for irrigation and also increased the yield. Therefore, heading stage of wheat and heading and anthesis stage of maize were suggested to be the optimum limited single irrigation time for relay-intercropped wheat and maize in the semi-arid area.
基金Project supported by the National Natural Science Foundation of China (No. 40401003)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-356)the Key Laboratory of Ecological Restoration and Ecosystem Management of Jilin Province (No. DS2004-03)
文摘Available water and fertilizer have been the main limiting factors for yields of spring wheat, which occupies a large area of the black soil zone in northeast China; thus, the need to set up appropriate models for scenario analysis of cropping system models has been increasing. The capability of CropSyst, a cropping system simulation model, to simulate spring wheat growth of a widely grown spring cultivar, 'Longmai 19', in the black soil zone in northeast China under different water and nitrogen regimes was evaluated. Field data collected from a rotation experiment of three growing seasons (1992-1994) were used to calibrate and validate the model. The model was run for 3 years by providing initial conditions at the beginning of the rotation without reinitializing the model in later years in the rotation sequence. Crop input parameters were set based on measured data or taken from CropSyst manual. A few cultivar-specific parameters were adjusted within a reasonable range of fluctuation. The results demonstrated the robustness of CropSyst for simulating evapotranspiration, aboveground biomass, and grain yield of 'Longmai 19' spring wheat with the root mean square errors being 7%, 13% and 13% of the observed means for evapotranspiration (ET), grain yield and aboveground biomass, respectively. Although CropSyst was able to simulate spring production reasonably well, further evaluation and improvement of the model with a more detailed field database was desirable for agricultural systems in northeast China.
文摘Biosolids were applied with urea to produce a granulated organo-mineral fertiliser (OMF) for application by farm fertiliser equipment to a range of agricultural crops. The recommended rates of nitrogen, phosphate and potash were calculated for the test crops using “The Fertiliser Manual”, which assesses the nutrient requirement based on previous cropping, rainfall and soil index. The OMF produced similar crop yields compared to ammonium nitrate fertiliser when applied as a top-dressing to winter wheat, forage maize and grass cut for silage in the cropping years 2010 to 2014. In 2012 the grain yield of spring barley top-dressed with OMF was significantly lower than the conventional fertiliser treatment, due to dry conditions following application. For this reason it is recommended that OMF is incorporated into the seedbed for spring sown crops and The Safe Sludge Matrix guidelines followed. The experimental work presented shows that OMF can be used in sustainable crop production systems as a source of nitrogen and phosphorus for a range of agricultural crops.
文摘Fertilization management to improve quality properties of spring wheat cultivars has received little research attention inNortheast China. In this study, the effects of different fertilization management regimes on the quality properties of springwheat cultivar New Kehan 9 (Triticum aestivum L.) were investigated for two years. The results showed that fertilizationconsistently increased wheat yield, and the highest yield was obtained with addition of N, P and NPK fertilizers. The NPKtreatment resulted in 50% more yield than the unfertilized plot. The average increases in protein content from NPK and NP atseeding + N at anthesis over no fertilization and NP fertilizers at seeding were 2.7% and 0.90% respectively. The highestprotein yields were achieved in NPK and NPK + N treatments, and the lowest protein yield was observed in the no fertilizertreatment due to both low protein content and grain yield. Fertilization increased gliadins content, but decreased gluteninscontent, thus the gliadins/glutenins ratios were higher in the fertilization treatments. The most obvious effect of fertilizationon kernel quality was the significant increase of hardness percentage. Although the dough rheological properties werenot strongly changed by fertilization, dry gluten and wet gluten were significantly increased, and the highest breadvolume and bread score were found in the NPK treatment in both years. The application of 3% urea at anthesis, or applying45 kg ha-1 of potassium sulphate at seeding, with urea and diammonium phosphate as basal applications, significantlyincreased protein yield and improved quality properties of this wheat cultivar.Key words: Fertilization, Yield, Protein contents, Protein fractions, Quality, Spring Wheat
文摘Assessing the impacts of climate variability on agricultural productivity at regional, national or global scale is essential for defining adaptation and mitigation strategies. We explore in this study the potential changes in spring wheat yields at Swift Current and Melfort, Canada, for different sowing windows under projected climate scenarios (i.e., the representative concentration pathways, RCP4.5 and RCP8.5). First, the APSIM model was calibrated and evaluated at the study sites using data from long term experimental field plots. Then, the impacts of change in sowing dates on final yield were assessed over the 2030-2099 period with a 1990-2009 baseline period of observed yield data, assuming that other crop management practices remained unchanged. Results showed that the performance of APSIM was quite satisfactory with an index of agreement of 0.80, R2 of 0.54, and mean absolute error (MAE) and root mean square error (RMSE) of 529 kg/ha and 1023 kg/ha, respectively (MAE = 476 kg/ha and RMSE = 684 kg/ha in calibration phase). Under the projected climate conditions, a general trend in yield loss was observed regardless of the sowing window, with a range from ?-24% to -94% depending on the site and the RCP, and noticeable losses during the 2060s and beyond (increasing CO2 effects being excluded). Smallest yield losses obtained through earlier possible sowing date (i.e., mid-April) under the projected future climate suggested that this option might be explored for mitigating possible adverse impacts of climate variability. Our findings could therefore serve as a basis for using APSIM as a decision support tool for adaptation/mitigation options under potential climate variability within Western Canada.
基金supported by the National Natural Science Foundation of China(31871979 and 31901881)the National Key R&D Program of China(2017YFD0201700,2017YFD0200900 and 2016YFD0300700)the China’s Donation to the Centre Agriculture Bioscience International(CABI)Development Fund。
文摘Resistant cultivar deployment is an effective method for cereal aphid management.Under greenhouse conditions,preliminary antibiosis resistance screening was conducted on 114 Ethiopian and 22 Chinese spring wheat accessions.After performing a bioassay to determine antibiosis resistance,aphid feeding behaviour and phenolic acid content analyses were performed on the aphid resistant wheat accessions by electrical penetration graph(EPG)and high performance liquid chromatography(HPLC),respectively.Among the wheat accessions,two high resistances,27moderate-resistances,and 35 low-resistances to Sitobion miscanthi were identified.The antibiosis resistance test showed prolonged pre-adult and pre-reproductive periods,shorter reproductive periods,lower fecundity,an intrinsic rate(rm)of increase,and a finite rate(λ)of increase of S.miscanthi on Lunxuan 145,Wane,Lunxuan 6,204511,Lunxuan 103and 5215 than those on the aphid-susceptible accession Beijing 837.The changes for the parameters of aphid feeding behaviour,including spending a longer time in the penetration and phloem salivation phases and less time in the phloem sap-feeding phase on the resistant wheat accessions,indicated that the aphid resistance may occur during the phloem phase and may be due to difficulties in the mechanical probing of the mesophyll cells.Additionally,the HPLC analysis showed higher contents of:1)ferulic acid in Lunxuan 145,Lunxuan 103 and Lunxuan 6;2)p-coumaric acid in Lunxuan145;3)vanillic acid in Lunxuan 145,Wane and Lunxuan 6;4)syringic acid in Lunxuan 103;and 5)caffeic acid in 5215.The contents of some phenolic acids within wheat leaves,such as p-courmaric acid and vanillic acid showed significant positive correlation with the duration of aphid development,but negative correlation with the aphid fecundity.The concentrations of these acids may be the causes of antibiosis resistance to S.miscanthi.The identification of grain aphid-resistant wheat accessions in our study will be helpful in future breeding program for pest control.
文摘The yellowed-leaf rate is one of the important variables in simulation models for thegrowth of spring wheat. Based on the field experiments (1985-1988), the evolution of yellowed-leafrate of spring wheat is analyzed. The functional relationship between the yellowing process of greenleaves and the development stages of spring wheat is established. Based on modelling and correctingfor the yellowing proass of green leaves affected by temperature and moisture, the synthetic modelfor simulating the dynaniical evolution of yellowed-leaf rate is constructed. The numerical experi-inents show that the result of the modelling is satisfactory.
文摘The experimental plants were grown in open-top chamber and exposed to 0.26 ppm of ozone for six hrs. per day from seedling stage till ripening. The results showed that the height of plants, rates of earing, flowering, grain forming, ripening and the weight/1000 kernels all declined in fumigated plants in comparison with the controls. The yield lost 76.7%. The actual actions of ozone were that it caused foliar injury and chlorophyll destruction accelerating leaf senescence, reduction of assimilation products. O3 was unfavorable injurious to transport and accumulation of substances to the grains after flowering.
文摘In the model developed in this paper, taking the characters and requirements of meteorological services into account, some conventional meteorological observations which are easy to be obtained have been ch.osen, and mathematical equations describing micro-growth processes of crops have been established on the basis of the field experiments, laboratorial analysis and computer's modelling tests with time interval of ten-days for several years (1987-1989), in accordance with the known biological and physical rules and corresponding reference literatures. It is a preliminary simplified simulation model of spring wheat growth in optimal water and nutrient conditions. The field experiments show that simulation results of this simplified model are satisfactory. The potential operational application and theoretical sense are significant in the meteorological forecast of yield and in the assessment of influences of climatic change on agriculture.
文摘Somaclonal variation of calli and regenerated plants of spring wheat were detected by using technique RAPD in the study. Calli at different culture stages and regenerated plants derived from young spikes and immature embryos were used as materials. Molecular variation could be reflected from electrophoresis pattern of RAPD fragments at different culture stage in calli, and in regenerated plants derived from different explants, even no phenotype variations were found. Somaclonal variation in calli and in regenerated plants appeared regularly: A higher frequency of variation in hybrids F2 was detected than that of the cultivar that is stable genetically. High variation frequency of RAPD fragments appeared in calli when cultured 75 days. The identical variations of RAPD fragments were observed in calli and in the regenerated plants induced from different genotype or explants. The variation frequency detected is higher in regenerated plants than that of in calli. RAPD could be applied easily and simply to determine variation in level of DNA at each stage cultured in vitro.
文摘Agricultural production is highly dependent on the climatic variability of the specific regions. Differential climatic and soil conditions bring about changes in yield, quality of crops thus affecting the economy. This study evaluated the impact of variability in different climatic factors keeping the other factors constant on spring wheat production in North Dakota from 2007 to 2011. The spring wheat yield mainly depends on the climatic changes during growing periods April to September. Average maximum air temperature was significantly different from April to September except June from 2007 to 2011. High average minimum and maximum air temperatures during planting time increase yield and planting area for 2010. In 2011, low mean soil temperature, excess rainfall in April caused low yield of spring wheat. The unmitigated climate variability will result in declines in yields. So, adoption of sustainable agriculture practices helps the farmers to develop the different practices for their farms.