This paper considers the case of smart antennas and multiple inputs multiple outputs (MIMO) systems, suited for the radio access of 3G mobile communications, involving two-dimensional spatio-temporal signal processing...This paper considers the case of smart antennas and multiple inputs multiple outputs (MIMO) systems, suited for the radio access of 3G mobile communications, involving two-dimensional spatio-temporal signal processing and two-dwell procedures. The main novelty of our work is twofold: first, a two-dwell acquisition technique is here performed to save the mean acquisition time versus one-dwell acquisition techniques;sec-ond, the searching procedure is driven from the estimates of the local signal-to-interference-plus-noise ratio, reducing again the mean acquisition time. Some examples of application to the detection of 3G communication signals in typical mobile scenarios are provided and we have verified the effectiveness of the analyzed spatio-temporal two-dwell procedures. The presented technique seems to constitute a promising tool for analytic setting of near optimum spatio-temporal acquisition testing procedures based on serial search/veri-fication modes.展开更多
文摘This paper considers the case of smart antennas and multiple inputs multiple outputs (MIMO) systems, suited for the radio access of 3G mobile communications, involving two-dimensional spatio-temporal signal processing and two-dwell procedures. The main novelty of our work is twofold: first, a two-dwell acquisition technique is here performed to save the mean acquisition time versus one-dwell acquisition techniques;sec-ond, the searching procedure is driven from the estimates of the local signal-to-interference-plus-noise ratio, reducing again the mean acquisition time. Some examples of application to the detection of 3G communication signals in typical mobile scenarios are provided and we have verified the effectiveness of the analyzed spatio-temporal two-dwell procedures. The presented technique seems to constitute a promising tool for analytic setting of near optimum spatio-temporal acquisition testing procedures based on serial search/veri-fication modes.