A bond coat for thermal barrier coating (TBC), NiCrAlY coating, is subjected to vac-uum heat treatment in order to remove internal stress before ceramic top coat is de-posited. The effect of vacuum heat treatment on t...A bond coat for thermal barrier coating (TBC), NiCrAlY coating, is subjected to vac-uum heat treatment in order to remove internal stress before ceramic top coat is de-posited. The effect of vacuum heat treatment on the oxidation behavior of the sputtered NiCrAlY coating has been investigated. The as-sputtered NiCrAlY coating consists of γ-Ni and b-NiAl phases. After vacuum heat treatment, the sputtered NiCrAlY coating mainly consists of γ'-Ni3Al, β-NiAl, γ-Ni, and trace of α-Al2O3 phases. The isothermal oxidation of sputtered NiCrAlY coating with and without vacuum heat treatment has been performed at 1000℃. It is shown that a-Al2O3 formed during vacuum heat treatment acts as nuclei for the formation of a-Al2O3, and the protective a-Al2O3 scale is formed more rapidly on the vacuum heat treated NiCrAlY coating than that formed on the untreated coating. Also the a-Al2O3 scale has a better adherence to the vacuum heat treated NiCrAlY coating. Therefore the vacuum heat treatment improves the oxidation resistance of sputtered NiCrAlY coating.展开更多
The effect of sputtered Ti-50Al-10Cr and Ti-50A1-20Cr coatings on both isothermal and cyclic oxidation resistance at 800-900℃ and hot corrosion resistance at 850℃ of Ti-24Al-14Nb-3V was investigated. Results indicat...The effect of sputtered Ti-50Al-10Cr and Ti-50A1-20Cr coatings on both isothermal and cyclic oxidation resistance at 800-900℃ and hot corrosion resistance at 850℃ of Ti-24Al-14Nb-3V was investigated. Results indicated that Ti-24Al-14Nb-3V alloys exhibited poor oxidation resistance due to the formation of Al2O3+TiO2+AlNbO4 mixed scales in air at 800-900℃ and poor hot corrosion resistance due to the spoliation of scales formed in Na2SO4+K2SO4 melts at 850℃. Both Ti-50Al-10Cr and Ti-50Al-20Cr coatings remarkably improved the oxidation and hot corrosion resistance of Ti-24Al-14Nb-3V alloy.展开更多
The sputtered nanocrystalline coating of K38G alloy was obtained by magnetron sput-tering. The hot corrosion behaviors of cast K38G alloy and its sputtered nanocrys-talline coating by pre-deposited 75wt%Na2SO4+25wt%K2...The sputtered nanocrystalline coating of K38G alloy was obtained by magnetron sput-tering. The hot corrosion behaviors of cast K38G alloy and its sputtered nanocrys-talline coating by pre-deposited 75wt%Na2SO4+25wt%K2SO4 at 900℃ were studied. The results indicated the occurrence of internal sulfidation in the cast K38G alloy with pre-deposited sulfattes of 0.8 and 3.0mg/cm2. However, the internal sulfidation was not observed in the coating with pre-deposited 0.8mg/cm2 sulfate. The hot corrosion resistance of K38G alloy was clearly enhanced through nanocrystallinzation, although the internal sulfides were still formed for the coating with sulfate deposit of 3mg/cm2. The relevant hot corrosion mechanism was also discussed.展开更多
The oxidation and hot corrosion behavior of Co-Ni-Cr-AI-Ta-Y coating produced by magnetron sputtering with and without enamel coating has been investigated in air at 900℃ and in molten 75 wt pct NaCl+25 wt pct Na2SO4...The oxidation and hot corrosion behavior of Co-Ni-Cr-AI-Ta-Y coating produced by magnetron sputtering with and without enamel coating has been investigated in air at 900℃ and in molten 75 wt pct NaCl+25 wt pct Na2SO4 at 850℃. The results show that the enamel coating possesses good hot corrosion resistance in the molten salts, in comparison with the sputtered Co-Ni-Cr-AI-Ta-Y coating. In the hot corrosion test, breakaway corrosion did not occur on the samples with enamel coating and the composition of enamel coating did not significantly change either. The oxidation resistance of the sputtered coating, which offers good adhesion, can be improved by the enamel coating.展开更多
Phase transformation of magnetronsputter deposited 1Cr18Ni9Ti stainlesssteel has been studied [1]. A single bccphase was formed as the substrate tempera-ture kept below 370℃. The deposits exhibited different textures...Phase transformation of magnetronsputter deposited 1Cr18Ni9Ti stainlesssteel has been studied [1]. A single bccphase was formed as the substrate tempera-ture kept below 370℃. The deposits exhibited different textures,which depended on the position of the subs-trates relative to the target: the predominant(110) planes were parallel to the surfaceof substrate which was parallel to the target:the predominance was weakened whenthe substrate surface was vertical to the展开更多
SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between co...SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices.展开更多
The isothermal and cyclic oxidation behaviors in air and hot corrosion behaviors in Na2SO4 + 25 wt% K2SO4 salt of M951 cast superalloy and a sputtered nanocrystalline coating of the same material were studied. Scanni...The isothermal and cyclic oxidation behaviors in air and hot corrosion behaviors in Na2SO4 + 25 wt% K2SO4 salt of M951 cast superalloy and a sputtered nanocrystalline coating of the same material were studied. Scanning electron microscopy, energy dispersive X-ray spectroscope, X-ray diffraction, and transmission electron microscopy were employed to examine the morphologies and phase composition of the M951 alloy and nanocrystalline coating before and after oxidation and hot corrosion. The as-sputtered nanocrystalline layer has a homogeneous y phase structure of very fine grain size (30-200 nm) with the preferential growth texture of (111) parallel to the interface. Adherent AI203 rich oxide scale formed on the cast M951 alloy and its sputtered coating after isothermal oxidation at 900 and 1000 ℃. However, when being isothermal oxidized at 1100℃ and cyclic oxidized at 1000 ℃, the oxide scale formed on the cast alloy was a mixture of NiO, NiAl2O4, Al2O3 and Nb205 and spalled seriously, while that formed on the sputtered coating mainly consisted of Al2O3 and was very adherent. Nanocrystallization promoted rapid formation of Al2O3 scale during the early stage of oxidation and enhanced the adhesion of the oxide scale, thus improved the oxidation resistance of the substrate alloy. Serious corrosion occurred for the cast alloy. The sputtered nanocrystalline coating apparently improved the hot corrosion resistance of the cast alloy in the mixed sulfate by the formation of a continuous Al2O3 and Cr2O3 mixed oxide layer on the surface of the coating, and the pre- oxidation treatment of the coating led to an even better effect.展开更多
Phase structure of sputtered Ta coating in the negative glow space and LPH effect were explored.The whole coating/substrate system is substrate→physically gas-absorbed Fe surface→oxygen-enriched TaOx layer→amorphou...Phase structure of sputtered Ta coating in the negative glow space and LPH effect were explored.The whole coating/substrate system is substrate→physically gas-absorbed Fe surface→oxygen-enriched TaOx layer→amorphous Ta→αandβdual phase→singleαphase.After LPH course,micro structure of Ta coating shows intact,only a few cracks emerge after 100 laser pulses,exhibiting thin HAZ but thick Fe/Ta ICZ,without martensitic transformation.For the electrodeposited Cr coating,continuous thermal stresses produce many extra micro-crack,substrate oxidation and martensitic transformation,leading to crack propagations and final bulk delamination,without any ICZ.展开更多
Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Partic...Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.展开更多
The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of th...The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of the Si target.By virtue of electron-probe microanalysis, X-ray diffraction analysis and scanning electron microscopy, the influence of the Si content on the coating composition, phase constituents, deposition rate, surface morphology and microstructure was investigated systematically. In addition, the change rules of micro-hardness, internal stress, adhesion, friction coefficient and wear rate with increasing Si content were also obtained. In this work, the precipitation of silicon in the coating was found.With increasing Si content, the coating microstructure gradually evolved from continuous columnar to discontinuous columnar and quasi-equiaxed crystals; accordingly, the coating inner stress first declined sharply and then kept almost constant. Both the coating hardness and the friction coefficient have the same change tendency with the increase of the Si content, namely increasing at first and then decreasing. The Cr–Si–N coating presented the highest hardness and average friction coefficient for an Si content of about 9.7 at.%, but the wear resistance decreased slightly due to the high brittleness.The above phenomenon was attributed to a microstructural evolution of the Cr–Si–N coatings induced by the silicon addition.展开更多
基金The authors thank Prof.H. Y. Lou for sputtering NiCrAlY coating.
文摘A bond coat for thermal barrier coating (TBC), NiCrAlY coating, is subjected to vac-uum heat treatment in order to remove internal stress before ceramic top coat is de-posited. The effect of vacuum heat treatment on the oxidation behavior of the sputtered NiCrAlY coating has been investigated. The as-sputtered NiCrAlY coating consists of γ-Ni and b-NiAl phases. After vacuum heat treatment, the sputtered NiCrAlY coating mainly consists of γ'-Ni3Al, β-NiAl, γ-Ni, and trace of α-Al2O3 phases. The isothermal oxidation of sputtered NiCrAlY coating with and without vacuum heat treatment has been performed at 1000℃. It is shown that a-Al2O3 formed during vacuum heat treatment acts as nuclei for the formation of a-Al2O3, and the protective a-Al2O3 scale is formed more rapidly on the vacuum heat treated NiCrAlY coating than that formed on the untreated coating. Also the a-Al2O3 scale has a better adherence to the vacuum heat treated NiCrAlY coating. Therefore the vacuum heat treatment improves the oxidation resistance of sputtered NiCrAlY coating.
文摘The effect of sputtered Ti-50Al-10Cr and Ti-50A1-20Cr coatings on both isothermal and cyclic oxidation resistance at 800-900℃ and hot corrosion resistance at 850℃ of Ti-24Al-14Nb-3V was investigated. Results indicated that Ti-24Al-14Nb-3V alloys exhibited poor oxidation resistance due to the formation of Al2O3+TiO2+AlNbO4 mixed scales in air at 800-900℃ and poor hot corrosion resistance due to the spoliation of scales formed in Na2SO4+K2SO4 melts at 850℃. Both Ti-50Al-10Cr and Ti-50Al-20Cr coatings remarkably improved the oxidation and hot corrosion resistance of Ti-24Al-14Nb-3V alloy.
文摘The sputtered nanocrystalline coating of K38G alloy was obtained by magnetron sput-tering. The hot corrosion behaviors of cast K38G alloy and its sputtered nanocrys-talline coating by pre-deposited 75wt%Na2SO4+25wt%K2SO4 at 900℃ were studied. The results indicated the occurrence of internal sulfidation in the cast K38G alloy with pre-deposited sulfattes of 0.8 and 3.0mg/cm2. However, the internal sulfidation was not observed in the coating with pre-deposited 0.8mg/cm2 sulfate. The hot corrosion resistance of K38G alloy was clearly enhanced through nanocrystallinzation, although the internal sulfides were still formed for the coating with sulfate deposit of 3mg/cm2. The relevant hot corrosion mechanism was also discussed.
基金This work was supported by the National Natural Science Foundation of China(Grant No.59971052).
文摘The oxidation and hot corrosion behavior of Co-Ni-Cr-AI-Ta-Y coating produced by magnetron sputtering with and without enamel coating has been investigated in air at 900℃ and in molten 75 wt pct NaCl+25 wt pct Na2SO4 at 850℃. The results show that the enamel coating possesses good hot corrosion resistance in the molten salts, in comparison with the sputtered Co-Ni-Cr-AI-Ta-Y coating. In the hot corrosion test, breakaway corrosion did not occur on the samples with enamel coating and the composition of enamel coating did not significantly change either. The oxidation resistance of the sputtered coating, which offers good adhesion, can be improved by the enamel coating.
文摘Phase transformation of magnetronsputter deposited 1Cr18Ni9Ti stainlesssteel has been studied [1]. A single bccphase was formed as the substrate tempera-ture kept below 370℃. The deposits exhibited different textures,which depended on the position of the subs-trates relative to the target: the predominant(110) planes were parallel to the surfaceof substrate which was parallel to the target:the predominance was weakened whenthe substrate surface was vertical to the
基金Funded by the China Aerospace Science&Industry Corp
文摘SiCp/Cu composites with a compact microstructure were successfully fabricated by vacuum hot-pressing method. In order to suppress the detrimental interfacial reactions and ameliorate the interfacial bonding between copper and silicon carbide, molybdenum coating was deposited on the surface of silicon carbide by magnetron sputtering method and crystallized heat-treatment. The effects of the interfacial design on the thermo-physical properties of Si Cp/Cu composites were studied in detail. Thermal conductivity and expansion test results showed that silicon carbide particles coated with uniform and compact molybdenum coating have improved the comprehensive thermal properties of the Si Cp/Cu composites. Furthermore, the adhesion of the interface between silicon carbide and copper was significantly strengthened after molybdenum coating. Si Cp/Cu composites with a maximum thermal conductivity of 274.056 W/(m·K) and a coefficient of thermal expansion of 9 ppm/K were successfully prepared when the volume of silicon carbide was about 50%, and these Si Cp/Cu composites have potential applications for the electronic packageing of the high integration electronic devices.
基金financially supported by the National Natural Science Foundation of China(No.51071163)the National Key Basic Research and Development Program("973 Program",Nos.2010CB631206 and 2012CB625100)the National High Technology Research and Development Program of China(No.2012AA03A512)
文摘The isothermal and cyclic oxidation behaviors in air and hot corrosion behaviors in Na2SO4 + 25 wt% K2SO4 salt of M951 cast superalloy and a sputtered nanocrystalline coating of the same material were studied. Scanning electron microscopy, energy dispersive X-ray spectroscope, X-ray diffraction, and transmission electron microscopy were employed to examine the morphologies and phase composition of the M951 alloy and nanocrystalline coating before and after oxidation and hot corrosion. The as-sputtered nanocrystalline layer has a homogeneous y phase structure of very fine grain size (30-200 nm) with the preferential growth texture of (111) parallel to the interface. Adherent AI203 rich oxide scale formed on the cast M951 alloy and its sputtered coating after isothermal oxidation at 900 and 1000 ℃. However, when being isothermal oxidized at 1100℃ and cyclic oxidized at 1000 ℃, the oxide scale formed on the cast alloy was a mixture of NiO, NiAl2O4, Al2O3 and Nb205 and spalled seriously, while that formed on the sputtered coating mainly consisted of Al2O3 and was very adherent. Nanocrystallization promoted rapid formation of Al2O3 scale during the early stage of oxidation and enhanced the adhesion of the oxide scale, thus improved the oxidation resistance of the substrate alloy. Serious corrosion occurred for the cast alloy. The sputtered nanocrystalline coating apparently improved the hot corrosion resistance of the cast alloy in the mixed sulfate by the formation of a continuous Al2O3 and Cr2O3 mixed oxide layer on the surface of the coating, and the pre- oxidation treatment of the coating led to an even better effect.
基金financial support of the project from the National Natural Science Foundation of China(No.51701223)。
文摘Phase structure of sputtered Ta coating in the negative glow space and LPH effect were explored.The whole coating/substrate system is substrate→physically gas-absorbed Fe surface→oxygen-enriched TaOx layer→amorphous Ta→αandβdual phase→singleαphase.After LPH course,micro structure of Ta coating shows intact,only a few cracks emerge after 100 laser pulses,exhibiting thin HAZ but thick Fe/Ta ICZ,without martensitic transformation.For the electrodeposited Cr coating,continuous thermal stresses produce many extra micro-crack,substrate oxidation and martensitic transformation,leading to crack propagations and final bulk delamination,without any ICZ.
基金supported by the National Natural Science Foundation of China under Grant Nos.51271191,51571205 and 51401209
文摘Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.
基金supported by the Global Frontier Program through the Global Frontier Hybrid Interface Materials(GFHIM)of the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.2013M3A6B1078874)funded by the National Nature Science Foundation of China(No.51301181)+2 种基金the Tianjin Key Research Program of Application Foundation and Advanced Technology(No.15JCZDJC39700)the Tianjin Science and Technology correspondent project(No.16JCTPJC49500)the Innovation Team Training Plan of Tianjin Universities and colleges(No.TD12-5043)
文摘The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of the Si target.By virtue of electron-probe microanalysis, X-ray diffraction analysis and scanning electron microscopy, the influence of the Si content on the coating composition, phase constituents, deposition rate, surface morphology and microstructure was investigated systematically. In addition, the change rules of micro-hardness, internal stress, adhesion, friction coefficient and wear rate with increasing Si content were also obtained. In this work, the precipitation of silicon in the coating was found.With increasing Si content, the coating microstructure gradually evolved from continuous columnar to discontinuous columnar and quasi-equiaxed crystals; accordingly, the coating inner stress first declined sharply and then kept almost constant. Both the coating hardness and the friction coefficient have the same change tendency with the increase of the Si content, namely increasing at first and then decreasing. The Cr–Si–N coating presented the highest hardness and average friction coefficient for an Si content of about 9.7 at.%, but the wear resistance decreased slightly due to the high brittleness.The above phenomenon was attributed to a microstructural evolution of the Cr–Si–N coatings induced by the silicon addition.