期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Downregulation of miR-503 Promotes ESCC Cell Proliferation,Migration,and Invasion by Targeting Cyclin D1 被引量:6
1
作者 Lanfang Jiang Zitong Zhao +3 位作者 Leilei Zheng Liyan Xue Qimin Zhan Yongmei Song 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2017年第3期208-217,共10页
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers in China, but the underlying molecular mechanism of ESCC is still unclear. Involvement of micro- RNAs has been demonstrated in cancer i... Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers in China, but the underlying molecular mechanism of ESCC is still unclear. Involvement of micro- RNAs has been demonstrated in cancer initiation and progression. Despite the reported function of miR-503 in several human cancers, its detailed anti-oncogenic role and clinical significance in ESCC remain undefined. In this study, we examined miR-503 expression by qPCR and found the downregulation of miR-503 expression in ESCC tissue relative to adjacent normal tissues. Fur- ther investigation in the effect of miR-503 on ESCC cell proliferation, migration, and invasion showed that enhanced expression of miR-503 inhibited ESCC aggressive phenotype and overexpres- sion of CCND1 reversed the effect of miR-503-mediated ESCC cell aggressive phenotype. Our study further identified CCND1 as the target gene of miR-503. Thus, miR-503 functions as a tumor suppressor and has an important role in ESCC by targeting CCND1. 展开更多
关键词 Esophageal squamous cellcarcinoma miR-503 Cyclin D1 Proliferation Migration and invasion
原文传递
Patient-derived xenograft platform of OSCC: a renewable human bio-bank for preclinical cancer research and a new co-clinical model for treatment optimization 被引量:5
2
作者 Shuyang Sun Zhiyuan Zhang 《Frontiers of Medicine》 SCIE CAS CSCD 2016年第1期104-110,共7页
Advances in next-generation sequencing and bioinformatics have begun to reveal the complex genetic landscape in human cancer genomes, including oral squamous cell carcinoma (OSCC). Sophisticated preclinical models t... Advances in next-generation sequencing and bioinformatics have begun to reveal the complex genetic landscape in human cancer genomes, including oral squamous cell carcinoma (OSCC). Sophisticated preclinical models that fully represent intra- and inter-tumoral heterogeneity are required to understand the molecular diversity of cancer and achieve the goal of personalized therapies. Patient-derived xenograft (PDX) models generated from human tumor samples that can retain the histological and genetic features of their donor tumors have been shown to be the preferred preclinical tool in translational cancer research compared with other conventional preclinical models. Specifically, genetically well-defined PDX models can be applied to accelerate targeted antitumor drug development and biomarker discovery. Recently, we have successfully established and characterized an OSCC PDX panel as part of our tumor bio-bank for translational cancer research. In this paper, we discuss the establishment, characterization, and preclinical applications of the PDX models. In particular, we focus on the classification and applications of the PDX models based on validated annotations, including clinicopathological features, genomic profiles, and pharmacological testing information. We also explore the translational value of this well-annotated PDX panel in the development of co-clinical trials for patient stratification and treatment optimization in the near future. Although various limitations still exist, this preclinical approach should be further tested and improved. 展开更多
关键词 patient-derived xenograft models personalized medicine co-clinical trial patient stratification oral squamous cellcarcinoma
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部