Segmenting brain tumors in Magnetic Resonance Imaging(MRI)volumes is challenging due to their diffuse and irregular shapes.Recently,2D and 3D deep neural networks have become famous for medical image segmentation beca...Segmenting brain tumors in Magnetic Resonance Imaging(MRI)volumes is challenging due to their diffuse and irregular shapes.Recently,2D and 3D deep neural networks have become famous for medical image segmentation because of the availability of labelled datasets.However,3D networks can be computationally expensive and require significant training resources.This research proposes a 3D deep learning model for brain tumor segmentation that uses lightweight feature extraction modules to improve performance without compromising contextual information or accuracy.The proposed model,called Hybrid Attention-Based Residual Unet(HA-RUnet),is based on the Unet architecture and utilizes residual blocks to extract low-and high-level features from MRI volumes.Attention and Squeeze-Excitation(SE)modules are also integrated at different levels to learn attention-aware features adaptively within local and global receptive fields.The proposed model was trained on the BraTS-2020 dataset and achieved a dice score of 0.867,0.813,and 0.787,as well as a sensitivity of 0.93,0.88,and 0.83 for Whole Tumor,Tumor Core,and Enhancing Tumor,on test dataset respectively.Experimental results show that the proposed HA-RUnet model outperforms the ResUnet and AResUnet base models while having a smaller number of parameters than other state-of-the-art models.Overall,the proposed HA-RUnet model can improve brain tumor segmentation accuracy and facilitate appropriate diagnosis and treatment planning for medical practitioners.展开更多
Image segmentation of sea-land remote sensing images is of great importance for downstream applications including shoreline extraction,the monitoring of near-shore marine environment,and near-shore target recognition....Image segmentation of sea-land remote sensing images is of great importance for downstream applications including shoreline extraction,the monitoring of near-shore marine environment,and near-shore target recognition.To mitigate large number of parameters and improve the segmentation accuracy,we propose a new Squeeze-Depth-Wise UNet(SDW-UNet)deep learning model for sea-land remote sensing image segmentation.The proposed SDW-UNet model leverages the squeeze-excitation and depth-wise separable convolution to construct new convolution modules,which enhance the model capacity in combining multiple channels and reduces the model parameters.We further explore the effect of position-encoded information in NLP(Natural Language Processing)domain on sea-land segmentation task.We have conducted extensive experiments to compare the proposed network with the mainstream segmentation network in terms of accuracy,the number of parameters and the time cost for prediction.The test results on remote sensing data sets of Guam,Okinawa,Taiwan China,San Diego,and Diego Garcia demonstrate the effectiveness of SDW-UNet in recognizing different types of sea-land areas with a smaller number of parameters,reduces prediction time cost and improves performance over other mainstream segmentation models.We also show that the position encoding can further improve the accuracy of model segmentation.展开更多
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20204010600090).
文摘Segmenting brain tumors in Magnetic Resonance Imaging(MRI)volumes is challenging due to their diffuse and irregular shapes.Recently,2D and 3D deep neural networks have become famous for medical image segmentation because of the availability of labelled datasets.However,3D networks can be computationally expensive and require significant training resources.This research proposes a 3D deep learning model for brain tumor segmentation that uses lightweight feature extraction modules to improve performance without compromising contextual information or accuracy.The proposed model,called Hybrid Attention-Based Residual Unet(HA-RUnet),is based on the Unet architecture and utilizes residual blocks to extract low-and high-level features from MRI volumes.Attention and Squeeze-Excitation(SE)modules are also integrated at different levels to learn attention-aware features adaptively within local and global receptive fields.The proposed model was trained on the BraTS-2020 dataset and achieved a dice score of 0.867,0.813,and 0.787,as well as a sensitivity of 0.93,0.88,and 0.83 for Whole Tumor,Tumor Core,and Enhancing Tumor,on test dataset respectively.Experimental results show that the proposed HA-RUnet model outperforms the ResUnet and AResUnet base models while having a smaller number of parameters than other state-of-the-art models.Overall,the proposed HA-RUnet model can improve brain tumor segmentation accuracy and facilitate appropriate diagnosis and treatment planning for medical practitioners.
基金This paper is supported by the following funds:The National Key Research and Development Program of China(2018YFF01010100)The Beijing Natural Science Foundation(4212001)+1 种基金Basic Research Program of Qinghai Province under Grants No.2021-ZJ-704Advanced information network Beijing laboratory(PXM2019_014204_500029).
文摘Image segmentation of sea-land remote sensing images is of great importance for downstream applications including shoreline extraction,the monitoring of near-shore marine environment,and near-shore target recognition.To mitigate large number of parameters and improve the segmentation accuracy,we propose a new Squeeze-Depth-Wise UNet(SDW-UNet)deep learning model for sea-land remote sensing image segmentation.The proposed SDW-UNet model leverages the squeeze-excitation and depth-wise separable convolution to construct new convolution modules,which enhance the model capacity in combining multiple channels and reduces the model parameters.We further explore the effect of position-encoded information in NLP(Natural Language Processing)domain on sea-land segmentation task.We have conducted extensive experiments to compare the proposed network with the mainstream segmentation network in terms of accuracy,the number of parameters and the time cost for prediction.The test results on remote sensing data sets of Guam,Okinawa,Taiwan China,San Diego,and Diego Garcia demonstrate the effectiveness of SDW-UNet in recognizing different types of sea-land areas with a smaller number of parameters,reduces prediction time cost and improves performance over other mainstream segmentation models.We also show that the position encoding can further improve the accuracy of model segmentation.