Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior perfo...Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods.展开更多
In recent years,as intelligent transportation systems(ITS)such as autonomous driving and advanced driver-assistance systems have become more popular,there has been a rise in the need for different sources of traffic s...In recent years,as intelligent transportation systems(ITS)such as autonomous driving and advanced driver-assistance systems have become more popular,there has been a rise in the need for different sources of traffic situation data.The classification of the road surface type,also known as the RST,is among the most essential of these situational data and can be utilized across the entirety of the ITS domain.Recently,the benefits of deep learning(DL)approaches for sensor-based RST classification have been demonstrated by automatic feature extraction without manual methods.The ability to extract important features is vital in making RST classification more accurate.This work investigates the most recent advances in DL algorithms for sensor-based RST classification and explores appropriate feature extraction models.We used different convolutional neural networks to understand the functional architecture better;we constructed an enhanced DL model called SE-ResNet,which uses residual connections and squeeze-and-excitation mod-ules to improve the classification performance.Comparative experiments with a publicly available benchmark dataset,the passive vehicular sensors dataset,have shown that SE-ResNet outperforms other state-of-the-art models.The proposed model achieved the highest accuracy of 98.41%and the highest F1-score of 98.19%when classifying surfaces into segments of dirt,cobblestone,or asphalt roads.Moreover,the proposed model significantly outperforms DL networks(CNN,LSTM,and CNN-LSTM).The proposed RE-ResNet achieved the classification accuracies of asphalt roads at 98.98,cobblestone roads at 97.02,and dirt roads at 99.56%,respectively.展开更多
In this article,to reduce the complexity and improve the generalization ability of current gesture recognition systems,we propose a novel SE-CNN attention architecture for sEMG-based hand gesture recognition.The propo...In this article,to reduce the complexity and improve the generalization ability of current gesture recognition systems,we propose a novel SE-CNN attention architecture for sEMG-based hand gesture recognition.The proposed algorithm introduces a temporal squeeze-and-excite block into a simple CNN architecture and then utilizes it to recalibrate the weights of the feature outputs from the convolutional layer.By enhancing important features while suppressing useless ones,the model realizes gesture recognition efficiently.The last procedure of the proposed algorithm is utilizing a simple attention mechanism to enhance the learned representations of sEMG signals to performmulti-channel sEMG-based gesture recognition tasks.To evaluate the effectiveness and accuracy of the proposed algorithm,we conduct experiments involving multi-gesture datasets Ninapro DB4 and Ninapro DB5 for both inter-session validation and subject-wise cross-validation.After a series of comparisons with the previous models,the proposed algorithm effectively increases the robustness with improved gesture recognition performance and generalization ability.展开更多
为解决图像采集中噪声和复杂背景对图片的影响以及深度神经网络的高耗时问题,基于可能性聚类算法与卷积神经网络,提出一种道路交通标识识别算法.该方法运用了图像分割技术,并结合卷积神经网络模型对道路交通标识进行更准确的识别.首先,...为解决图像采集中噪声和复杂背景对图片的影响以及深度神经网络的高耗时问题,基于可能性聚类算法与卷积神经网络,提出一种道路交通标识识别算法.该方法运用了图像分割技术,并结合卷积神经网络模型对道路交通标识进行更准确的识别.首先,通过色彩增强、图像分割、特征提取、数据增强和归一化等批量预处理操作,形成一个完整的数据集;然后,结合Squeeze-and-Excitation思想和残差网络结构,充分训练出MRESE(My Residual-Squeeze and Excitation)卷积神经网络模型;最后,将优化的网络模型用于道路交通标志的识别.实验结果表明,该方法使训练时间缩短了5%左右,识别精度可达99.02%.展开更多
In order to effectively solve the problems of low accuracy and large amount of calculation of current human behavior recognition,a behavior recognition algorithm based on squeeze-and-excitation network(SENet) combined...In order to effectively solve the problems of low accuracy and large amount of calculation of current human behavior recognition,a behavior recognition algorithm based on squeeze-and-excitation network(SENet) combined with 3 D Inception network(I3 D) and gated recurrent unit(GRU) network is proposed.The algorithm first expands the Inception module to three-dimensional,and builds a network based on the three-dimensional module,and expands SENet to three-dimensional,making it an attention mechanism that can pay attention to the three-dimensional channel.Then SENet is introduced into the 13 D network,named SE-I3 D,and SENet is introduced into the CRU network,named SE-GRU.And,SE-13 D and SE-GRU are merged,named SE-13 D-GRU.Finally,the network uses Softmax to classify the results in the UCF-101 dataset.The experimental results show that the SE-I3 D-GRU network achieves a recognition rate of 93.2% on the UCF-101 dataset.展开更多
传统的单一方位最大密度投影(MIP)图像在检测颅内动脉瘤时容易忽略部分形态特征,造成漏检和误检。针对该问题,本文提出一种新的基于全方位MIP图像的颅内动脉瘤检测方法。首先,对三维磁共振血管造影(MRA)图像进行全方位最大密度投影,获得...传统的单一方位最大密度投影(MIP)图像在检测颅内动脉瘤时容易忽略部分形态特征,造成漏检和误检。针对该问题,本文提出一种新的基于全方位MIP图像的颅内动脉瘤检测方法。首先,对三维磁共振血管造影(MRA)图像进行全方位最大密度投影,获得MIP图像;然后,利用匹配滤波对颅内动脉瘤区域进行预定位;最后,使用Squeeze and Excitation(SE)模块对CaraNet模型进行了改进,并用改进后的模型对全方位MIP图像中的预定位区域进行检测,确定是否患有颅内动脉瘤。本文收集了245例图像对所提方法进行了测试实验。实验结果表明本文所提方法的精确率和特异性分别可以达到93.75%和93.86%,显著提高了对MIP图像中颅内动脉瘤的检测性能。展开更多
Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome o...Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome observation difficulties caused by the cage and feathers blocking,but it is still hard to identify similar head states.To solve this problem,the fine-grained detection of caged-hens head states was developed using adaptive Brightness Adjustment in combination with Convolutional Neural Networks(FBA-CNN).Grid Region-based CNN(R-CNN),a convolution neural network(CNN),was optimized with the Squeeze-and-Excitation(SE)and Depthwise Over-parameterized Convolutional(DO-Conv)to detect layer heads from cages and to accurately cut them as single-head images.The brightness of each single-head image was adjusted adaptively and classified through the deep convolution neural network based on SE-Resnet50.Finally,we returned to the original image to realize multi-target detection with coordinate mapping.The results showed that the AP@0.5 of layer head detection using the optimized Grid R-CNN was 0.947,the accuracy of classification with SE-Resnet50 was 0.749,the F1 score was 0.637,and the mAP@0.5 of FBA-CNN was 0.846.In summary,this automated method can accurately identify different layer head states in layer cages to provide a basis for follow-up studies of abnormal behavior including dyspnea and cachexia.展开更多
微动脉瘤是糖尿病视网膜病变的初期症状,消除该病灶可在早期非常有效地预防糖尿病视网膜病变。但由于视网膜结构复杂,同时眼底图像的成像由于患者、环境、采集设备等因素的不同会存在不同的亮度和对比度,现有的微动脉瘤检测算法难以实...微动脉瘤是糖尿病视网膜病变的初期症状,消除该病灶可在早期非常有效地预防糖尿病视网膜病变。但由于视网膜结构复杂,同时眼底图像的成像由于患者、环境、采集设备等因素的不同会存在不同的亮度和对比度,现有的微动脉瘤检测算法难以实现该病灶的精确检测和定位,为此本文提出嵌入SENet(squeeze-andexcitation networks)的改进YOLO(you only look once)v4自动检测算法。该算法在YOLOv4网络基础上,首先通过使用一种改进的快速模糊C均值聚类算法对目标样本进行先验框参数优化,以提高先验框与特征图的匹配度;然后,在主干网络嵌入SENet模块,通过强化关键信息,抑制背景信息,提高微动脉瘤的置信度;此外,还在网络颈部增加空间金字塔池化结构以增强主干网络输出特征的接受域,从而有助于分离出重要的上下文信息;最后,在Kaggle数据集上进行模型验证,并与其他方法进行对比。实验结果表明,与其他各种结构的YOLOv4网络模型相比,所提出的嵌入SENet的改进YOLOv4网络模型能显著提高检测结果(与原始YOLOv4相比Fscore提升了12.68%);与其他网络模型以及方法相比,所提出的嵌入SENet的改进YOLOv4网络模型的自动检测精度明显更优,且可实现精准定位。故本文所提出的嵌入SENet的改进YOLOv4算法性能较优,能准确、有效地检测并定位出眼底图像中的微动脉瘤。展开更多
基金supported by the Beijing Natural Science Foundation (L202003)National Natural Science Foundation of China (No. 31700479)。
文摘Automatic modulation classification(AMC) technology is one of the cutting-edge technologies in cognitive radio communications. AMC based on deep learning has recently attracted much attention due to its superior performances in classification accuracy and robustness. In this paper, we propose a novel, high resolution and multi-scale feature fusion convolutional neural network model with a squeeze-excitation block, referred to as HRSENet,to classify different kinds of modulation signals.The proposed model establishes a parallel computing mechanism of multi-resolution feature maps through the multi-layer convolution operation, which effectively reduces the information loss caused by downsampling convolution. Moreover, through dense skipconnecting at the same resolution and up-sampling or down-sampling connection at different resolutions, the low resolution representation of the deep feature maps and the high resolution representation of the shallow feature maps are simultaneously extracted and fully integrated, which is benificial to mine signal multilevel features. Finally, the feature squeeze and excitation module embedded in the decoder is used to adjust the response weights between channels, further improving classification accuracy of proposed model.The proposed HRSENet significantly outperforms existing methods in terms of classification accuracy on the public dataset “Over the Air” in signal-to-noise(SNR) ranging from-2dB to 20dB. The classification accuracy in the proposed model achieves 85.36% and97.30% at 4dB and 10dB, respectively, with the improvement by 9.71% and 5.82% compared to LWNet.Furthermore, the model also has a moderate computation complexity compared with several state-of-the-art methods.
基金funded by National Research Council of Thailand (NRCT):An Integrated Road Safety Innovations of Pedestrian Crossing for Mortality and Injuries Reduction Among All Groups of Road Users,Contract No.N33A650757supported by the Thailand Science Research and Innovation Fund+1 种基金the University of Phayao (Grant No.FF66-UoE001)King Mongkut’s University of Technology North Bangkok underContract No.KMUTNB-66-KNOW-05.
文摘In recent years,as intelligent transportation systems(ITS)such as autonomous driving and advanced driver-assistance systems have become more popular,there has been a rise in the need for different sources of traffic situation data.The classification of the road surface type,also known as the RST,is among the most essential of these situational data and can be utilized across the entirety of the ITS domain.Recently,the benefits of deep learning(DL)approaches for sensor-based RST classification have been demonstrated by automatic feature extraction without manual methods.The ability to extract important features is vital in making RST classification more accurate.This work investigates the most recent advances in DL algorithms for sensor-based RST classification and explores appropriate feature extraction models.We used different convolutional neural networks to understand the functional architecture better;we constructed an enhanced DL model called SE-ResNet,which uses residual connections and squeeze-and-excitation mod-ules to improve the classification performance.Comparative experiments with a publicly available benchmark dataset,the passive vehicular sensors dataset,have shown that SE-ResNet outperforms other state-of-the-art models.The proposed model achieved the highest accuracy of 98.41%and the highest F1-score of 98.19%when classifying surfaces into segments of dirt,cobblestone,or asphalt roads.Moreover,the proposed model significantly outperforms DL networks(CNN,LSTM,and CNN-LSTM).The proposed RE-ResNet achieved the classification accuracies of asphalt roads at 98.98,cobblestone roads at 97.02,and dirt roads at 99.56%,respectively.
基金funded by the National Key Research and Development Program of China(2017YFB1303200)NSFC(81871444,62071241,62075098,and 62001240)+1 种基金Leading-Edge Technology and Basic Research Program of Jiangsu(BK20192004D)Jiangsu Graduate Scientific Research Innovation Programme(KYCX20_1391,KYCX21_1557).
文摘In this article,to reduce the complexity and improve the generalization ability of current gesture recognition systems,we propose a novel SE-CNN attention architecture for sEMG-based hand gesture recognition.The proposed algorithm introduces a temporal squeeze-and-excite block into a simple CNN architecture and then utilizes it to recalibrate the weights of the feature outputs from the convolutional layer.By enhancing important features while suppressing useless ones,the model realizes gesture recognition efficiently.The last procedure of the proposed algorithm is utilizing a simple attention mechanism to enhance the learned representations of sEMG signals to performmulti-channel sEMG-based gesture recognition tasks.To evaluate the effectiveness and accuracy of the proposed algorithm,we conduct experiments involving multi-gesture datasets Ninapro DB4 and Ninapro DB5 for both inter-session validation and subject-wise cross-validation.After a series of comparisons with the previous models,the proposed algorithm effectively increases the robustness with improved gesture recognition performance and generalization ability.
文摘为解决图像采集中噪声和复杂背景对图片的影响以及深度神经网络的高耗时问题,基于可能性聚类算法与卷积神经网络,提出一种道路交通标识识别算法.该方法运用了图像分割技术,并结合卷积神经网络模型对道路交通标识进行更准确的识别.首先,通过色彩增强、图像分割、特征提取、数据增强和归一化等批量预处理操作,形成一个完整的数据集;然后,结合Squeeze-and-Excitation思想和残差网络结构,充分训练出MRESE(My Residual-Squeeze and Excitation)卷积神经网络模型;最后,将优化的网络模型用于道路交通标志的识别.实验结果表明,该方法使训练时间缩短了5%左右,识别精度可达99.02%.
基金Supported by the Shaanxi Province Key Research and Development Project(No.2021 GY-280)the Natural Science Foundation of Shaanxi Province(No.2021JM-459)the National Natural Science Foundation of China(No.61772417,61634004,61602377).
文摘In order to effectively solve the problems of low accuracy and large amount of calculation of current human behavior recognition,a behavior recognition algorithm based on squeeze-and-excitation network(SENet) combined with 3 D Inception network(I3 D) and gated recurrent unit(GRU) network is proposed.The algorithm first expands the Inception module to three-dimensional,and builds a network based on the three-dimensional module,and expands SENet to three-dimensional,making it an attention mechanism that can pay attention to the three-dimensional channel.Then SENet is introduced into the 13 D network,named SE-I3 D,and SENet is introduced into the CRU network,named SE-GRU.And,SE-13 D and SE-GRU are merged,named SE-13 D-GRU.Finally,the network uses Softmax to classify the results in the UCF-101 dataset.The experimental results show that the SE-I3 D-GRU network achieves a recognition rate of 93.2% on the UCF-101 dataset.
文摘传统的单一方位最大密度投影(MIP)图像在检测颅内动脉瘤时容易忽略部分形态特征,造成漏检和误检。针对该问题,本文提出一种新的基于全方位MIP图像的颅内动脉瘤检测方法。首先,对三维磁共振血管造影(MRA)图像进行全方位最大密度投影,获得MIP图像;然后,利用匹配滤波对颅内动脉瘤区域进行预定位;最后,使用Squeeze and Excitation(SE)模块对CaraNet模型进行了改进,并用改进后的模型对全方位MIP图像中的预定位区域进行检测,确定是否患有颅内动脉瘤。本文收集了245例图像对所提方法进行了测试实验。实验结果表明本文所提方法的精确率和特异性分别可以达到93.75%和93.86%,显著提高了对MIP图像中颅内动脉瘤的检测性能。
基金This work was financially supported by the Jiangsu Provincial Key Research and Development Program(Grant No.BE2019382,No.BE2020378).
文摘Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome observation difficulties caused by the cage and feathers blocking,but it is still hard to identify similar head states.To solve this problem,the fine-grained detection of caged-hens head states was developed using adaptive Brightness Adjustment in combination with Convolutional Neural Networks(FBA-CNN).Grid Region-based CNN(R-CNN),a convolution neural network(CNN),was optimized with the Squeeze-and-Excitation(SE)and Depthwise Over-parameterized Convolutional(DO-Conv)to detect layer heads from cages and to accurately cut them as single-head images.The brightness of each single-head image was adjusted adaptively and classified through the deep convolution neural network based on SE-Resnet50.Finally,we returned to the original image to realize multi-target detection with coordinate mapping.The results showed that the AP@0.5 of layer head detection using the optimized Grid R-CNN was 0.947,the accuracy of classification with SE-Resnet50 was 0.749,the F1 score was 0.637,and the mAP@0.5 of FBA-CNN was 0.846.In summary,this automated method can accurately identify different layer head states in layer cages to provide a basis for follow-up studies of abnormal behavior including dyspnea and cachexia.
文摘微动脉瘤是糖尿病视网膜病变的初期症状,消除该病灶可在早期非常有效地预防糖尿病视网膜病变。但由于视网膜结构复杂,同时眼底图像的成像由于患者、环境、采集设备等因素的不同会存在不同的亮度和对比度,现有的微动脉瘤检测算法难以实现该病灶的精确检测和定位,为此本文提出嵌入SENet(squeeze-andexcitation networks)的改进YOLO(you only look once)v4自动检测算法。该算法在YOLOv4网络基础上,首先通过使用一种改进的快速模糊C均值聚类算法对目标样本进行先验框参数优化,以提高先验框与特征图的匹配度;然后,在主干网络嵌入SENet模块,通过强化关键信息,抑制背景信息,提高微动脉瘤的置信度;此外,还在网络颈部增加空间金字塔池化结构以增强主干网络输出特征的接受域,从而有助于分离出重要的上下文信息;最后,在Kaggle数据集上进行模型验证,并与其他方法进行对比。实验结果表明,与其他各种结构的YOLOv4网络模型相比,所提出的嵌入SENet的改进YOLOv4网络模型能显著提高检测结果(与原始YOLOv4相比Fscore提升了12.68%);与其他网络模型以及方法相比,所提出的嵌入SENet的改进YOLOv4网络模型的自动检测精度明显更优,且可实现精准定位。故本文所提出的嵌入SENet的改进YOLOv4算法性能较优,能准确、有效地检测并定位出眼底图像中的微动脉瘤。