To clarify the relationship between externally solidified crystals(ESCs)and other defects,e.g.,defect bands and pores,two dimensional(2D)and three dimensional(3D)characterization methods were adopted to analyze castin...To clarify the relationship between externally solidified crystals(ESCs)and other defects,e.g.,defect bands and pores,two dimensional(2D)and three dimensional(3D)characterization methods were adopted to analyze castings produced using a modified ingate system equipped with and without an ESC collector.The reduction of ESCs strongly reduced defect band width and shrinkage pore quantity.By reducing the quantity and size of ESCs,net-shrinkage pores were transformed into isolated island-shrinkage pores.We determined via statistical analysis that the mechanical properties of high pressure die castings were strongly related to the size and fraction of the ESCs rather than porosity volume.The reduction of ESCs also caused tensile transgranular fracture modes to transform into intergranular fracture modes.Additionally,casting pressurization strongly reduced pore morphology,volume,and size.展开更多
Larger and larger proportions of aluminium castings,especially those produced by the die casting process,can be observed during recent years in the automotive industry,house-hold articles and others.In case of the aut...Larger and larger proportions of aluminium castings,especially those produced by the die casting process,can be observed during recent years in the automotive industry,house-hold articles and others.In case of the automotive industry,apart from the traditional elements produced by the die pressure method such as engine blocks or crank shaft bedplates,aluminium is displacing steel from structural parts of cars('body in white').The current state and development directions of the structural solutions of cold-chamber die castings are analysed in this paper.These solutions drive the prospective development of these machines and die casting technology.The focus is mainly on essential functional systems such as:hydraulic drives of closing and locking units,as well as pressing in die machines of known companies present on the European market.展开更多
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52175284)the State Key Lab of Advanced Metals and Materials in University of Science and Technology Beijing(No.2021-ZD08)。
文摘To clarify the relationship between externally solidified crystals(ESCs)and other defects,e.g.,defect bands and pores,two dimensional(2D)and three dimensional(3D)characterization methods were adopted to analyze castings produced using a modified ingate system equipped with and without an ESC collector.The reduction of ESCs strongly reduced defect band width and shrinkage pore quantity.By reducing the quantity and size of ESCs,net-shrinkage pores were transformed into isolated island-shrinkage pores.We determined via statistical analysis that the mechanical properties of high pressure die castings were strongly related to the size and fraction of the ESCs rather than porosity volume.The reduction of ESCs also caused tensile transgranular fracture modes to transform into intergranular fracture modes.Additionally,casting pressurization strongly reduced pore morphology,volume,and size.
文摘Larger and larger proportions of aluminium castings,especially those produced by the die casting process,can be observed during recent years in the automotive industry,house-hold articles and others.In case of the automotive industry,apart from the traditional elements produced by the die pressure method such as engine blocks or crank shaft bedplates,aluminium is displacing steel from structural parts of cars('body in white').The current state and development directions of the structural solutions of cold-chamber die castings are analysed in this paper.These solutions drive the prospective development of these machines and die casting technology.The focus is mainly on essential functional systems such as:hydraulic drives of closing and locking units,as well as pressing in die machines of known companies present on the European market.
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.