We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)proc...We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)process.The coherent photon–phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator.The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly.When the Duffing nonlinearity is weak,the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS.Our scheme may be extended to other quantum systems to study novel quantum effects.展开更多
In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the...In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the resulting ordinary differential equations were solved by collocation method. The velocity, temperature, concentration and magnetic induction profiles were determined with help of various flow parameters. The numerical scheme was simulated with aid of MATLAB. The results showed that increasing the squeeze number only boosts velocity and concentration while lowering temperature. Conversely, increasing the Hartmann number, Reynold’s magnetic number, Eckert number and Thermal Grashof number generally increases temperature but decreases both velocity and concentration. Chemical reaction rate and Soret number solely elevate concentration while Schmidt number only reduces it. The results of this study will be useful in the fields of oil and gas industry, plastic processing industries, filtration, food processing, lubrication system in machinery, Microfluidics devices for drug delivery and other related fields of nanotechnology.展开更多
Tamping squeeze is essential for maintaining ballasted tracks.Previous studies have simulated squeezing behavior as a linear motion with a constant squeezing distance,which is unsuitable for various ballast beds in th...Tamping squeeze is essential for maintaining ballasted tracks.Previous studies have simulated squeezing behavior as a linear motion with a constant squeezing distance,which is unsuitable for various ballast beds in the field.This study aims to develop realistic formulas for squeezing behavior in tamping maintenance.First,a universal expression for the squeezing behavior of tamping operation was proposed through theoretical derivation.Subsequently,a custom testing method for squeezing distance with high accuracy was designed.Finally,the parameters of the universal expression were obtained from testing results using the response surface method and novel formulas for squeezing behavior were innovatively developed.This study can lead to greatly improved simulation accuracy and effective maintenance of tamping squeeze.展开更多
Squeezed reservoir engineering is a powerful technique in quantum information that combines the features of squeezing and reservoir engineering to create and stabilize non-classical quantum states. In this paper, we f...Squeezed reservoir engineering is a powerful technique in quantum information that combines the features of squeezing and reservoir engineering to create and stabilize non-classical quantum states. In this paper, we focus on the previously neglected aspect of the impact of the squeezing phase on the precision of quantum phase and amplitude estimation based on a simple model of a two-level system(TLS) interacting with a squeezed reservoir. We derive the optimal squeezed phase-matching conditions for phase φ and amplitude θ parameters, which are crucial for enhancing the precision of quantum parameter estimation. The robustness of the squeezing-enhanced quantum Fisher information against departures from these conditions is examined, demonstrating that minor deviations from phase-matching can still result in remarkable precision of estimation. Additionally, we provide a geometric interpretation of the squeezed phase-matching conditions from the classical motion of a TLS on the Bloch sphere. Our research contributes to a deeper understanding of the operational requirements for employing squeezed reservoir engineering to advance quantum parameter estimation.展开更多
应变-旋转(Strain-Rotation,S-R)和分解定理为分析几何非线性问题提供了合理可靠的理论基础,但用有限元求解时会遇到大变形发生后的网格畸变问题。近年提出的虚单元法(Virtual element method,VEM)适用于一般的多边形网格,因此,该文尝...应变-旋转(Strain-Rotation,S-R)和分解定理为分析几何非线性问题提供了合理可靠的理论基础,但用有限元求解时会遇到大变形发生后的网格畸变问题。近年提出的虚单元法(Virtual element method,VEM)适用于一般的多边形网格,因此,该文尝试使用一阶虚单元求解基于S-R和分解定理的二维几何非线性问题,以克服网格畸变的影响。基于重新定义的多项式位移空间基函数,推演获得一阶虚单元分析线弹性力学问题时允许位移空间向多项式位移空间的投影表达式;按照虚单元法双线性格式的计算规则,分析处理基于更新拖带坐标法和势能率原理的增量变分方程;进而建立离散系统方程及其矩阵表达形式,并编制MATLAB求解程序;采用常规多边形网格和畸变网格,应用该文算法分析均布荷载下的悬臂梁和均匀内压下的厚壁圆筒变形。结果与已有文献和ANSYS软件的对比表明:该文算法在两种网格中均可有效执行且具备足够数值精度。总体该文算法为基于S-R和分解定理的二维几何非线性问题求解提供了一种鲁棒方法。展开更多
基金Project supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202400624)the Natural Science Foundation of Chongqing CSTC(Grant No.CSTB2022NSCQBHX0020)+3 种基金the China Electronics Technology Group Corporation 44th Research Institute(Grant No.6310001-2)the Project Grant“Noninvasive Sensing Measurement based on Terahertz Technology”from Province and MOE Collaborative Innovation Centre for New Generation Information Networking and Terminalsthe Key Research Program of CQUPT on Interdisciplinary and Emerging Field(A2018-01)the Venture&Innovation Support program for Chongqing Overseas Returnees Year 2022。
文摘We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon–photon interaction via the backward stimulated Brillouin scattering(BSBS)process.The coherent photon–phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator.The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly.When the Duffing nonlinearity is weak,the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS.Our scheme may be extended to other quantum systems to study novel quantum effects.
文摘In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the resulting ordinary differential equations were solved by collocation method. The velocity, temperature, concentration and magnetic induction profiles were determined with help of various flow parameters. The numerical scheme was simulated with aid of MATLAB. The results showed that increasing the squeeze number only boosts velocity and concentration while lowering temperature. Conversely, increasing the Hartmann number, Reynold’s magnetic number, Eckert number and Thermal Grashof number generally increases temperature but decreases both velocity and concentration. Chemical reaction rate and Soret number solely elevate concentration while Schmidt number only reduces it. The results of this study will be useful in the fields of oil and gas industry, plastic processing industries, filtration, food processing, lubrication system in machinery, Microfluidics devices for drug delivery and other related fields of nanotechnology.
基金supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation under Grant Number GZC20240099the Fundamental Research Funds for the Central Universities under Grant Number 2024XKRC034 and 2022JBQY009。
文摘Tamping squeeze is essential for maintaining ballasted tracks.Previous studies have simulated squeezing behavior as a linear motion with a constant squeezing distance,which is unsuitable for various ballast beds in the field.This study aims to develop realistic formulas for squeezing behavior in tamping maintenance.First,a universal expression for the squeezing behavior of tamping operation was proposed through theoretical derivation.Subsequently,a custom testing method for squeezing distance with high accuracy was designed.Finally,the parameters of the universal expression were obtained from testing results using the response surface method and novel formulas for squeezing behavior were innovatively developed.This study can lead to greatly improved simulation accuracy and effective maintenance of tamping squeeze.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12265004)Jiangxi Provincial Natural Science Foundation (Grant No. 20242BAB26010)+1 种基金the National Natural Science Foundation of China (Grant No. 12365003)Jiangxi Provincial Natural Science Foundation (Grant Nos. 20212ACB211004 and 20212BAB201014)。
文摘Squeezed reservoir engineering is a powerful technique in quantum information that combines the features of squeezing and reservoir engineering to create and stabilize non-classical quantum states. In this paper, we focus on the previously neglected aspect of the impact of the squeezing phase on the precision of quantum phase and amplitude estimation based on a simple model of a two-level system(TLS) interacting with a squeezed reservoir. We derive the optimal squeezed phase-matching conditions for phase φ and amplitude θ parameters, which are crucial for enhancing the precision of quantum parameter estimation. The robustness of the squeezing-enhanced quantum Fisher information against departures from these conditions is examined, demonstrating that minor deviations from phase-matching can still result in remarkable precision of estimation. Additionally, we provide a geometric interpretation of the squeezed phase-matching conditions from the classical motion of a TLS on the Bloch sphere. Our research contributes to a deeper understanding of the operational requirements for employing squeezed reservoir engineering to advance quantum parameter estimation.
文摘应变-旋转(Strain-Rotation,S-R)和分解定理为分析几何非线性问题提供了合理可靠的理论基础,但用有限元求解时会遇到大变形发生后的网格畸变问题。近年提出的虚单元法(Virtual element method,VEM)适用于一般的多边形网格,因此,该文尝试使用一阶虚单元求解基于S-R和分解定理的二维几何非线性问题,以克服网格畸变的影响。基于重新定义的多项式位移空间基函数,推演获得一阶虚单元分析线弹性力学问题时允许位移空间向多项式位移空间的投影表达式;按照虚单元法双线性格式的计算规则,分析处理基于更新拖带坐标法和势能率原理的增量变分方程;进而建立离散系统方程及其矩阵表达形式,并编制MATLAB求解程序;采用常规多边形网格和畸变网格,应用该文算法分析均布荷载下的悬臂梁和均匀内压下的厚壁圆筒变形。结果与已有文献和ANSYS软件的对比表明:该文算法在两种网格中均可有效执行且具备足够数值精度。总体该文算法为基于S-R和分解定理的二维几何非线性问题求解提供了一种鲁棒方法。