In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper st...In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.展开更多
Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired disto...Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired distortion level with sufficient robustness is a challenging task for watermarking in multimedia applications.In the paper,we proposed a smart technique for video watermarking associating meta-heuristic algorithms along with an embedding method to gain an optimized efficiency.The main aim of the optimization algorithm is to obtain solutions with maximum robustness,and which should not exceed the set threshold of quality.To represent the accuracy of the proposed scheme,we employ a popular video watermarking technique(DCT domain)having frame selection and embedding method for watermarking.A squirrel search algorithm is chosen as a meta-heuristic algorithm that utilizes the stated fitness function.The results indicate that quality constraint is fulfilled,and the proposed technique gives improved robustness against different attacks with several quality thresholds.The proposed technique could be practically implemented in several multimedia applications such as the films industry,medical imagery,OOT platforms,etc.展开更多
Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is nece...Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is necessary.Improving the sustainability and greenness of concrete is the focus of this research.In this regard,899 data points were collected from existing studies where cement,slag,fly ash,superplasticizer,coarse aggregate,and fine aggregate were considered potential influential factors.The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult.Instead of the traditional compressive strength test,this study combines five novel metaheuristic algorithms with extreme gradient boosting(XGB)to predict the compressive strength of green concrete based on fly ash and blast furnace slag.The intelligent prediction models were assessed using the root mean square error(RMSE),coefficient of determination(R^(2)),mean absolute error(MAE),and variance accounted for(VAF).The results indicated that the squirrel search algorithm-extreme gradient boosting(SSA-XGB)yielded the best overall prediction performance with R^(2) values of 0.9930 and 0.9576,VAF values of 99.30 and 95.79,MAE values of 0.52 and 2.50,RMSE of 1.34 and 3.31 for the training and testing sets,respectively.The remaining five prediction methods yield promising results.Therefore,the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete.Finally,the developed SSA-XGB considered the effects of all the input factors on the compressive strength.The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.展开更多
Multi-Area Multi-Fuel Economic Dispatch (MAMFED) aims to allocate the best generation schedule in each area and to offer the best power transfers between different areas by minimizing the objective functions among the...Multi-Area Multi-Fuel Economic Dispatch (MAMFED) aims to allocate the best generation schedule in each area and to offer the best power transfers between different areas by minimizing the objective functions among the available fuel alternatives for each unit while satisfying various constraints in power systems. In this paper, a Fuzzified Squirrel Search Algorithm (FSSA) algorithm is proposed to solve the single-area multi-fuel economic dispatch (SAMFED) and MAMFED problems. Squirrel Search Algorithm (SSA) mimics the foraging behavior of squirrels based on the dynamic jumping and gliding strategies. In the SSA approach, predator presence behavior and a seasonal monitoring condition are employed to increase the search ability of the algorithm, and to balance the exploitation and exploration. The suggested approach considers the line losses, valve point loading impacts, multi-fuel alternatives, and tie-line limits of the power system. Because of the contradicting nature of fuel cost and pollutant emission objectives, weighted sum approach and price penalty factor are used to transfer the bi-objective function into a single objective function. Furthermore, a fuzzy decision strategy is introduced to find one of the Pareto optimal fronts as the best compromised solution. The feasibility of the FSSA is tested on a three-area test system for both the SAMFED and MAMFED problems. The results of FSSA approach are compared with other heuristic approaches in the literature. Multi-objective performance indicators such as generational distance, spacing metric and ratio of non-dominated individuals are evaluated to validate the effectiveness of FSSA. The results divulge that the FSSA is a promising approach to solve the SAMFED and MAMFED problems while providing a better compromise solution in comparison with other heuristic approaches.展开更多
Human pose estimation(HPE)is a procedure for determining the structure of the body pose and it is considered a challenging issue in the computer vision(CV)communities.HPE finds its applications in several fields namel...Human pose estimation(HPE)is a procedure for determining the structure of the body pose and it is considered a challenging issue in the computer vision(CV)communities.HPE finds its applications in several fields namely activity recognition and human-computer interface.Despite the benefits of HPE,it is still a challenging process due to the variations in visual appearances,lighting,occlusions,dimensionality,etc.To resolve these issues,this paper presents a squirrel search optimization with a deep convolutional neural network for HPE(SSDCNN-HPE)technique.The major intention of the SSDCNN-HPE technique is to identify the human pose accurately and efficiently.Primarily,the video frame conversion process is performed and pre-processing takes place via bilateral filtering-based noise removal process.Then,the EfficientNet model is applied to identify the body points of a person with no problem constraints.Besides,the hyperparameter tuning of the EfficientNet model takes place by the use of the squirrel search algorithm(SSA).In the final stage,the multiclass support vector machine(M-SVM)technique was utilized for the identification and classification of human poses.The design of bilateral filtering followed by SSA based EfficientNetmodel for HPE depicts the novelty of the work.To demonstrate the enhanced outcomes of the SSDCNN-HPE approach,a series of simulations are executed.The experimental results reported the betterment of the SSDCNN-HPE system over the recent existing techniques in terms of different measures.展开更多
Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing metho...Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30.展开更多
In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features ...In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features in a dataset,making it difficult to pick the best set of features using standard approaches.Consequently,in this research,a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm(ASSOA)has been proposed.When using metaheuristics to pick features,it is common for the selection of features to vary across runs,which can lead to instability.Because of this,we used the adaptive squirrel search to balance exploration and exploitation duties more evenly in the optimization process.For the selection of the best subset of features,we recommend using the binary ASSOA search strategy we developed before.According to the suggested approach,the number of features picked is reduced while maximizing classification accuracy.A ten-feature dataset from the University of California,Irvine(UCI)repository was used to test the proposed method’s performance vs.eleven other state-of-the-art approaches,including binary grey wolf optimization(bGWO),binary hybrid grey wolf and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hybrid GWO and genetic algorithm 4028 CMC,2023,vol.74,no.2(bGWO-GA),binary firefly algorithm(bFA),and bGAmethods.Experimental results confirm the superiority and effectiveness of the proposed algorithm for solving the problem of feature selection.展开更多
基金supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB114 and 2023BAB094).
文摘In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem.
文摘Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired distortion level with sufficient robustness is a challenging task for watermarking in multimedia applications.In the paper,we proposed a smart technique for video watermarking associating meta-heuristic algorithms along with an embedding method to gain an optimized efficiency.The main aim of the optimization algorithm is to obtain solutions with maximum robustness,and which should not exceed the set threshold of quality.To represent the accuracy of the proposed scheme,we employ a popular video watermarking technique(DCT domain)having frame selection and embedding method for watermarking.A squirrel search algorithm is chosen as a meta-heuristic algorithm that utilizes the stated fitness function.The results indicate that quality constraint is fulfilled,and the proposed technique gives improved robustness against different attacks with several quality thresholds.The proposed technique could be practically implemented in several multimedia applications such as the films industry,medical imagery,OOT platforms,etc.
基金funding provided by the China Scholarship Council (Nos.202008440524 and 202006370006)supported by the Distinguished Youth Science Foundation of Hunan Province of China (No.2022JJ10073)+1 种基金Innovation Driven Project of Central South University (No.2020CX040)Shenzhen Sciencee and Technology Plan (No.JCYJ20190808123013260).
文摘Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is necessary.Improving the sustainability and greenness of concrete is the focus of this research.In this regard,899 data points were collected from existing studies where cement,slag,fly ash,superplasticizer,coarse aggregate,and fine aggregate were considered potential influential factors.The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult.Instead of the traditional compressive strength test,this study combines five novel metaheuristic algorithms with extreme gradient boosting(XGB)to predict the compressive strength of green concrete based on fly ash and blast furnace slag.The intelligent prediction models were assessed using the root mean square error(RMSE),coefficient of determination(R^(2)),mean absolute error(MAE),and variance accounted for(VAF).The results indicated that the squirrel search algorithm-extreme gradient boosting(SSA-XGB)yielded the best overall prediction performance with R^(2) values of 0.9930 and 0.9576,VAF values of 99.30 and 95.79,MAE values of 0.52 and 2.50,RMSE of 1.34 and 3.31 for the training and testing sets,respectively.The remaining five prediction methods yield promising results.Therefore,the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete.Finally,the developed SSA-XGB considered the effects of all the input factors on the compressive strength.The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.
文摘Multi-Area Multi-Fuel Economic Dispatch (MAMFED) aims to allocate the best generation schedule in each area and to offer the best power transfers between different areas by minimizing the objective functions among the available fuel alternatives for each unit while satisfying various constraints in power systems. In this paper, a Fuzzified Squirrel Search Algorithm (FSSA) algorithm is proposed to solve the single-area multi-fuel economic dispatch (SAMFED) and MAMFED problems. Squirrel Search Algorithm (SSA) mimics the foraging behavior of squirrels based on the dynamic jumping and gliding strategies. In the SSA approach, predator presence behavior and a seasonal monitoring condition are employed to increase the search ability of the algorithm, and to balance the exploitation and exploration. The suggested approach considers the line losses, valve point loading impacts, multi-fuel alternatives, and tie-line limits of the power system. Because of the contradicting nature of fuel cost and pollutant emission objectives, weighted sum approach and price penalty factor are used to transfer the bi-objective function into a single objective function. Furthermore, a fuzzy decision strategy is introduced to find one of the Pareto optimal fronts as the best compromised solution. The feasibility of the FSSA is tested on a three-area test system for both the SAMFED and MAMFED problems. The results of FSSA approach are compared with other heuristic approaches in the literature. Multi-objective performance indicators such as generational distance, spacing metric and ratio of non-dominated individuals are evaluated to validate the effectiveness of FSSA. The results divulge that the FSSA is a promising approach to solve the SAMFED and MAMFED problems while providing a better compromise solution in comparison with other heuristic approaches.
文摘Human pose estimation(HPE)is a procedure for determining the structure of the body pose and it is considered a challenging issue in the computer vision(CV)communities.HPE finds its applications in several fields namely activity recognition and human-computer interface.Despite the benefits of HPE,it is still a challenging process due to the variations in visual appearances,lighting,occlusions,dimensionality,etc.To resolve these issues,this paper presents a squirrel search optimization with a deep convolutional neural network for HPE(SSDCNN-HPE)technique.The major intention of the SSDCNN-HPE technique is to identify the human pose accurately and efficiently.Primarily,the video frame conversion process is performed and pre-processing takes place via bilateral filtering-based noise removal process.Then,the EfficientNet model is applied to identify the body points of a person with no problem constraints.Besides,the hyperparameter tuning of the EfficientNet model takes place by the use of the squirrel search algorithm(SSA).In the final stage,the multiclass support vector machine(M-SVM)technique was utilized for the identification and classification of human poses.The design of bilateral filtering followed by SSA based EfficientNetmodel for HPE depicts the novelty of the work.To demonstrate the enhanced outcomes of the SSDCNN-HPE approach,a series of simulations are executed.The experimental results reported the betterment of the SSDCNN-HPE system over the recent existing techniques in terms of different measures.
基金supported in part by the Science and Technology Major Project of Anhui Province(Grant No.17030901037)in part by the Humanities and Social Science Fund of Ministry of Education of China(Grant No.19YJAZH098)+2 种基金in part by the Program for Synergy Innovation in the Anhui Higher Education Institutions of China(Grant Nos.GXXT-2020-012,GXXT-2021-044)in part by Science and Technology Planning Project of Wuhu City,Anhui Province,China(Grant No.2021jc1-2)part by Research Start-Up Fund for Introducing Talents from Anhui Polytechnic University(Grant No.2021YQQ066).
文摘Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30.
文摘In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features in a dataset,making it difficult to pick the best set of features using standard approaches.Consequently,in this research,a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm(ASSOA)has been proposed.When using metaheuristics to pick features,it is common for the selection of features to vary across runs,which can lead to instability.Because of this,we used the adaptive squirrel search to balance exploration and exploitation duties more evenly in the optimization process.For the selection of the best subset of features,we recommend using the binary ASSOA search strategy we developed before.According to the suggested approach,the number of features picked is reduced while maximizing classification accuracy.A ten-feature dataset from the University of California,Irvine(UCI)repository was used to test the proposed method’s performance vs.eleven other state-of-the-art approaches,including binary grey wolf optimization(bGWO),binary hybrid grey wolf and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hybrid GWO and genetic algorithm 4028 CMC,2023,vol.74,no.2(bGWO-GA),binary firefly algorithm(bFA),and bGAmethods.Experimental results confirm the superiority and effectiveness of the proposed algorithm for solving the problem of feature selection.