期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
改性(Sr,Ca)TiO_(3)基储能陶瓷介电及MLCC性能研究 被引量:1
1
作者 陈永虹 林志盛 +2 位作者 张子山 陈本夏 王根水 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2022年第9期976-982,共7页
工业级脉冲储能多层瓷介电容器(MLCC)是现阶段国内研制和生产电子启动装置的重要元器件,针对国内主要有机薄膜电容器尺寸大、寿命短、可靠性较低的不足,本研究采用传统固相反应法,制备了SrTiO_(3)和CaTiO_(3)基的脉冲储能介质陶瓷材料,... 工业级脉冲储能多层瓷介电容器(MLCC)是现阶段国内研制和生产电子启动装置的重要元器件,针对国内主要有机薄膜电容器尺寸大、寿命短、可靠性较低的不足,本研究采用传统固相反应法,制备了SrTiO_(3)和CaTiO_(3)基的脉冲储能介质陶瓷材料,研究了微量助烧剂掺杂,以及Sr^(2+)/Ca^(2+)相互掺杂对陶瓷材料的介电性能的影响,并进一步制备和研究了以(Sr,Ca)Ti O_(3)为基体MLCC性能。实验结果表明:通过加入质量分数1.0%的助烧剂,引入微量Bi^(3+)可取代Sr^(2+),提高了SrTiO_(3)材料的介电常数,而Bi^(3+)对CaTiO_(3)基材料的介电性能无明显影响;Mn元素有效抑制高温烧结中Ti^(4+)的还原,降低介电损耗;加入助烧剂有效降低瓷粉的烧结温度,提高材料的致密性。(Sr_(x)Ca_(1-x))TiO_(3)体系的MLCC可保持较高的介电常数和较低的介电损耗,当x=0.4时,其介电损耗tanδ=1.8×10^(–4),击穿强度为59.38 V/μm,高低温放电电流变化率为±7%,放电稳定,在常温和高温(125℃)下经1000次循环充放电实验均未失效,是一种在不同电场强度下具有相对较优的容量稳定性以及较高可靠性的脉冲特性(Sr,Ca)TiO_(3)基电容器陶瓷介质材料。 展开更多
关键词 (sr Ca)tio_(3) 瓷粉 脉冲 多层瓷介电容器
下载PDF
Lead-free(Ba,Sr)TiO_(3)-based ceramics with superior tunable properties by the semi-solution method
2
作者 Yi Zhao Wenfeng Liu +5 位作者 Dongsheng Ran Yihang Jin Zhiyuan Li Chengzhi Zhong Fanyi Kong Shengtao Li 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第6期746-756,共11页
High-performance dielectric tunable materials with both high dielectric tunability and low dielectric loss are urgently needed for new-generation electronic tunable devices.In the present study,a new system,(Ba_(0.675... High-performance dielectric tunable materials with both high dielectric tunability and low dielectric loss are urgently needed for new-generation electronic tunable devices.In the present study,a new system,(Ba_(0.675)Sr_(0.325))_(1−x)La_(x)Ti_(1−x)MnxO_(3)(x=0.25%,0.5%,0.75%,and 1.0%),was designed.The acceptor dopant Mn was added to lower dielectric loss,while the donor dopant La was introduced to enhance dielectric tunability.The samples were prepared using the conventional solid-state(CS)reaction method and the semi-solution(SS)method.The experimental results showed that the morphology of the ceramics was optimized by further improving the processing procedure.Dense microstructures,homogeneous grains,and uniform dopant distributions could be achieved successfully by the semi-solution method.Moreover,a significant enhancement in the tunable properties was realized owing to the improved microstructure mentioned above.The optimum tunable properties occurred in the samples prepared by the semi-solution method at x=0.75%,with a high dielectric tunability of 85.0%,a low dielectric loss of 0.0011,and an excellent figure of merit(FOM)of 773.The tunable properties of(Ba,Sr)TiO_(3)(BST)ceramics were even superior to those of lead-based materials,with an FOM of approximately 700.All the results suggested that the semi-solution method rendered BST ceramics more promising for applications in tunable devices. 展开更多
关键词 microstructure tunable properties (Ba sr)tio_(3)(bst)ceramics semi-solution(SS)method
原文传递
P-E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications 被引量:12
3
作者 Dongxu LI Zong-Yang SHEN +5 位作者 Zhipeng LI Wenqin LUO Xingcai WANG Zhumei WANG Fusheng SONG Yueming LI 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第2期183-192,共10页
(Ba0.3Sr0.7)x(Bi0.5Na0.5)1-xTiO3(BSxBNT,x=0.3–V0.8)ceramics were prepared to investigate their structure,dielectric and ferroelectric properties.BSxBNT ceramics possess pure perovskite structure accompanied from a te... (Ba0.3Sr0.7)x(Bi0.5Na0.5)1-xTiO3(BSxBNT,x=0.3–V0.8)ceramics were prepared to investigate their structure,dielectric and ferroelectric properties.BSxBNT ceramics possess pure perovskite structure accompanied from a tetragonal symmetry to pseudo-cubic one with the increase of x value,being confirmed by X-ray diffraction(XRD)and Raman results.The Tm corresponding to a temperature in the vicinity of maximum dielectric constant gradually decreases from 110℃(x=0.3)to-45℃(x=0.8),across Tm=36℃(x=0.5)with a maximum dielectric constant(ɛr=5920@1 kHz)around room temperature.The saturated polarization Ps gradually while the remnant polarization Pr sharply decreases with the increase of x value,making the P-E hysteresis loop of BSxBNT ceramics goes slim.A maximum difference between Ps and Pr(Ps-Pr)is obtained for BSxBNT ceramics with x=0.5,at which a high recoverable energy density(Wrec=1.04 J/cm3)is achieved under an applied electric field of 100 kV/cm with an efficiency ofη=77%.Meanwhile,the varied temperature P-E loops,fatigue measurements,and electric breakdown characteristics for the sample with x=0.5 indicate that it is promising for pulsed power energy storage capacitor candidate materials. 展开更多
关键词 energy storage ceramics Ba0.3sr0.7tio3(bst) Bi0.5Na0.5tio3(BNT) relaxor ferroelectrics pulsed power capacitor
原文传递
BS_(0.5)BNT-based relaxor ferroelectric ceramic/glass-ceramic composites for energy storage 被引量:2
4
作者 Xuhai Shi Kai Li +8 位作者 Zong-Yang Shen Junqi Liu Chaoqun Chen Xiaojun Zeng Bo Zhang Fusheng Song Wenqin Luo Zhumei Wang Yueming Li 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第4期695-710,共16页
Relaxor ferroelectric ceramics have very high dielectric constant(e)but relatively low electrical breakdown strength(Eb),while glass-ceramics exhibit higher E,due to the more uniformly dispersed amorphous phases and s... Relaxor ferroelectric ceramics have very high dielectric constant(e)but relatively low electrical breakdown strength(Eb),while glass-ceramics exhibit higher E,due to the more uniformly dispersed amorphous phases and submicrocrystals/nanocrystals inside.How to effectively combine the advantages of both relaxor ferroelectric ceramics and glass-ceramics is of great significance for the development of new dielectric materials with high energy storage performance.In this work,we firstly prepared BaO-SrO-Bi_(2)O_(3)-Na_(2)0-TiO_(2)-Al_(2)O_(3)-SiO_(2)(abbreviated as GS)glass powders,and then fabricated(Ba_(0.3)Sr_(0.7))_(0.5)(Bi_(0.5)Na_(0.5))_(0.5)TiO_(3)+x wt%GS ceramic composites(abbreviated as BSo.sBNT-xGS,x=0,2,6,10,14,16,and 18).Submicrocrystals/nanocrystals with a similar composition to BSo.sBNT were crystalized from the glass,ensuring the formation of uniform core-shell structure in BSo.sBNT-xGS relaxor ferroelectric ceramic/glass-ceramic composites.When the addition amount of GS was 14 wt%,the composite possessed both high&r(>3200 at 1 kHz)and high E,(~170 kV/cm)at room temperature,and their recoverable energy storage density and efficiency were Wrec=2.1 J/cm’and n=65.2%,respectively.The BSo.sBNT-14GS composite also had several attractive properties such as good temperature,frequency,cycle stability,and fast charge-discharge speed.This work provides insights into the relaxor ceramic/glass-ceramic composites for pulsed power capacitors and sheds light on the utilization of the hybrid systems. 展开更多
关键词 relaxor ferroelectrics energy storage ceramics GLASS-ceramics Bi_(0.5)Na_(0.5)tio_(3)(BNT) Ba_(0.3)sr_(0.7)tio_(3)(bst)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部