The surface ion-imprinting concept and chitosan incorporated sol-gel process were applied to the preparation of a new attapulgite-supported organic-inorganic hybrid polymer for selective separation of Sr(II) from aque...The surface ion-imprinting concept and chitosan incorporated sol-gel process were applied to the preparation of a new attapulgite-supported organic-inorganic hybrid polymer for selective separation of Sr(II) from aqueous solution. The prepared polymer was characterized with SEM, IR and XRD. The results showed that as a sorbent, it had good configuration and binding sites. Its adsorption behaviors for Sr(II) was investigated by FAAS and ICP-AES. The effects on adsorption capacities, including pH, quiescent time, and adsorbent amount were discussed, and the adsorption isothermal curve was obtained. Then the Kd a parameter estimating relative adsorbability, was conducted to study the selectivity towards Sr(II) of the prepared polymer. Under the optimum conditions, the ion-imprinted polymer offered a fast kinetics for the adsorption of Sr(II) and the maximum capacity was 12.9mg/g. The Kd and K parameters estimating relative adsorbability towards target ion, suggested that selective recognition of the ion-imprinted polymer towards Sr(II) was much higher than that of the non-imprinted polymer and attapulgite. Furthermore, the ion-imprinted polymer is of great regeneration capacity. The prepared functional polymer was shown to be promising for selective preseparation and enrichment of trace Sr(II) in environmental samples.展开更多
Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spec...Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Based on the results of potentiometric acid-base ti- trations, the total carboxylic acid concentration on OGO surface was calculated to be 3.92 retool/g, which was much higher than that on GO surface. The results of adsorption experiments indicated that the adsorption capacities of OGO for Sr(II) and U(VI) removal were improved significantly after ozonization.展开更多
基金China National Science Foundation (No.20877036)Science and Technology Ministry of China (N0.05C26213100474)
文摘The surface ion-imprinting concept and chitosan incorporated sol-gel process were applied to the preparation of a new attapulgite-supported organic-inorganic hybrid polymer for selective separation of Sr(II) from aqueous solution. The prepared polymer was characterized with SEM, IR and XRD. The results showed that as a sorbent, it had good configuration and binding sites. Its adsorption behaviors for Sr(II) was investigated by FAAS and ICP-AES. The effects on adsorption capacities, including pH, quiescent time, and adsorbent amount were discussed, and the adsorption isothermal curve was obtained. Then the Kd a parameter estimating relative adsorbability, was conducted to study the selectivity towards Sr(II) of the prepared polymer. Under the optimum conditions, the ion-imprinted polymer offered a fast kinetics for the adsorption of Sr(II) and the maximum capacity was 12.9mg/g. The Kd and K parameters estimating relative adsorbability towards target ion, suggested that selective recognition of the ion-imprinted polymer towards Sr(II) was much higher than that of the non-imprinted polymer and attapulgite. Furthermore, the ion-imprinted polymer is of great regeneration capacity. The prepared functional polymer was shown to be promising for selective preseparation and enrichment of trace Sr(II) in environmental samples.
基金supported by the National Natural Science Foundation of China (21207136, 21272236, 21225730, 21577032, 91326202)the Chinese National Fusion Project for ITER (2013GB110005)+1 种基金the Fundamental Research Funds for the Central Universities (JB2015001)the Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection and the Priority Academic Program Development of Jiangsu Higher Education Institutions are acknowledged
文摘Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Based on the results of potentiometric acid-base ti- trations, the total carboxylic acid concentration on OGO surface was calculated to be 3.92 retool/g, which was much higher than that on GO surface. The results of adsorption experiments indicated that the adsorption capacities of OGO for Sr(II) and U(VI) removal were improved significantly after ozonization.