The Sr2 CeO4:Ln3+(Ln=Eu,Dy)fine phosphor particles were prepared by a facile wet chemical approach,in which the consecutive hydrothermal-combustion reaction was performed.The doping of Ln3+into Sr2 CeO4 has little inf...The Sr2 CeO4:Ln3+(Ln=Eu,Dy)fine phosphor particles were prepared by a facile wet chemical approach,in which the consecutive hydrothermal-combustion reaction was performed.The doping of Ln3+into Sr2 CeO4 has little influence on the structure of host,and the as-prepared samples display wellcrystallized spherical or elliptical shape with an average particle size at about 100-200 nm.For Eu3+ions-doped Sr2 CeO4,with the increase of Eu3+-doping concentration,the blue light emission band with the maximum at 468 nm originating from a Ce4+→O2-charge transfer of the host decreases obviously and the characteristic red light emission of Eu3+(5 D0→7 F2 transition at 618 nm)is enhanced gradually.Simultaneously,the fluorescent lifetime of the broadband emission of Sr2 CeO4 decreases with the doping of Eu3+,indicating an efficient energy transfer from the host to the doping Eu3+ions.The ene rgy transfer efficiency from the host to Eu3+was investigated in detail,and the emitting color of Sr2 CeO4:Eu3+can be easily tuned from blue to red by varying the doping concentration of Eu3+ions.Moreover,the luminescence of Dy3+-doped Sr2 CeO4 was also studied.Similar energy transfer pheno menon can be observed,and the incorporation of Dy3+into Sr2 CeO4 host leads to the characteristic emission of 4 F9/2→6 H15/2(488 nm,blue light)and 4 F9/2→6 H13/2(574 nm,yellow light)of Dy3+.The Sr2 CeO4:Ln3+fine particles with tunable luminescence are quite beneficial for its potential applications in the optoelectronic fields.展开更多
Superfine Sr2CeO4:RE3+ (RE=Eu, Sm) phosphors were synthesized at relatively low temperature by a modified sol-gel method using nitrates as raw materials, ethylenediaminetetraacetic acid (EDTA) as complexing agent. Sin...Superfine Sr2CeO4:RE3+ (RE=Eu, Sm) phosphors were synthesized at relatively low temperature by a modified sol-gel method using nitrates as raw materials, ethylenediaminetetraacetic acid (EDTA) as complexing agent. Single phase phosphors could be obtained at calcination temperature above 800 °C and pH value higher than 6.4 of initial solution. The as-prepared powders consisted of uniform crotch-like grains. The preparation process was monitored by thermogravimetric and differential thermal analysis (TG-DTA) ...展开更多
Citric acid complexing sol-gel auto-combustion method was explored to synthesize superfine Sr2CeO4 phosphors using the inorganic salts Sr(NO3)2 and Ce(NO3)3 as raw materials together with citric acid (CA) as a c...Citric acid complexing sol-gel auto-combustion method was explored to synthesize superfine Sr2CeO4 phosphors using the inorganic salts Sr(NO3)2 and Ce(NO3)3 as raw materials together with citric acid (CA) as a chelating agent. TGDTA, XRD, SEM and photoluminescence spectra were used to investigate the formation process, microstructure and luminescent properties of the synthesized Sr2CeO4. The results show that the crystallization of Sr2CeO4 begins at about 800 ℃ and completes around 900 ℃ with an orthorhombic structure. When the calcination temperature is above 1000 ℃, Sr2CeO4 partly decomposes into SrCeO3. SEM studies show that the particles of Sr2CeO4 obtained at 900 ℃ are sphericallike shape and superfine with diameter below 100 nm. The excitation spectrum of the superfine Sr2CeO4 phosphors displays a broad band with two peaks around 290 and 350 nm respectively. The former peak is stronger than the latter one. This broad band is due to the charge transfer (CT) band of the Ce^4+ ion. Excited by a radiation of 290 nm, the superfine phosphors emit a strong blue-white fluorescence, and the emission spectrum shows a broad band with a peak around 470 nm, which can be assigned to the f→t1g transition of Ce^4+ . It is found that the emission intensity is affected by the calcination temperature.展开更多
Novel up-conversion (UC) luminescent nano-powders, CaSc2O4:Yb3+:Er3+ were prepared with a combustion method at an ignition temperature as low as 200 oC. The CaSc2O4:Yb3+,Er3+ nano-powder had an orthorhombic C...Novel up-conversion (UC) luminescent nano-powders, CaSc2O4:Yb3+:Er3+ were prepared with a combustion method at an ignition temperature as low as 200 oC. The CaSc2O4:Yb3+,Er3+ nano-powder had an orthorhombic CaFe2O4-type structure, and showed sphere-like morphology with an average diameter of about 30 nm. It gave strong green (525, 552 nm) and red (652–674 nm) up-conversion luminescence due to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ under a 980 nm semiconductor laser excitation at room temperature. The optimized doping concentrations for Yb3+ and Er3+ were 6.0 mol.% and 1.0 mol.%, respectively. Effects of ignition temperature and glycine-to-metal nitrate molar ratio on up-conversion emission intensity were also investigated. The log-log plots of luminescence intensity and pump power revealed that the 652–674 nm red emissions and 552 nm green emissions belonged to a two-photon process, while the 525 nm green emissions belonged to a three-photon process. The possible UC mechanisms were briefly discussed.展开更多
The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with r...The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.展开更多
A novel, high-temperature, mechano-chemical(HTMC) method was developed to synthesise singlephase Sr_2CeO_4:Eu^(3+)phosphor. Phosphors were characterised by X-ray diffraction(XRD), scanning electron microscopy...A novel, high-temperature, mechano-chemical(HTMC) method was developed to synthesise singlephase Sr_2CeO_4:Eu^(3+)phosphor. Phosphors were characterised by X-ray diffraction(XRD), scanning electron microscopy(SEM), and luminescence spectra. Compared with phosphors prepared by the traditional hightemperature solid state method and citric acid gel method, single-phase Sr_2CeO_4:Eu^(3+)powders by using the HTMC method, with small average particle sizes of about 5 μm, a narrow size distribution range and uniform dispersion, were prepared at 800 ℃, and reached their maximum luminescent intensity at 900 ℃.Under ultraviolet excitation at 298 nm, the sample showed good luminescence with the strongest red light of 616 nm. However, Sr_2CeO_4:Eu^(3+)was prepared at the higher temperature of 1100 ℃ by solid state method and citric acid gel method. The particle size was too large and uneven with phosphor agglomeration by high-temperature solid state method. The luminescent intensity reached a maximum for Sr_2CeO_4:Eu^(3+)phosphor at a synthesis temperature of 1100 ℃ by using the high-temperature solid state method, and at 1200 ℃ by both citric acid gel and chemical precipitation methods. Furthermore, the advantages of the Sr_2CeO_4:Eu^(3+)powder prepared by HTMC method were discussed compared with that prepared using traditional high-temperature solid state and citric acid gel methods.展开更多
基金Project supported by National Natural Science Foundation of China(51972097)This work was financially supported by the Science Foundation of Hebei Normal University,China(L2019K11).This work was also financially supported by the project WINLEDS—POCI-01-0145-FEDER-030351 and developed within the scope of the project CICECO-Aveiro Institute of Materials,FCT Ref.UID/CTM/50011/2019,financed by national funds through the FCT/MCTES.
文摘The Sr2 CeO4:Ln3+(Ln=Eu,Dy)fine phosphor particles were prepared by a facile wet chemical approach,in which the consecutive hydrothermal-combustion reaction was performed.The doping of Ln3+into Sr2 CeO4 has little influence on the structure of host,and the as-prepared samples display wellcrystallized spherical or elliptical shape with an average particle size at about 100-200 nm.For Eu3+ions-doped Sr2 CeO4,with the increase of Eu3+-doping concentration,the blue light emission band with the maximum at 468 nm originating from a Ce4+→O2-charge transfer of the host decreases obviously and the characteristic red light emission of Eu3+(5 D0→7 F2 transition at 618 nm)is enhanced gradually.Simultaneously,the fluorescent lifetime of the broadband emission of Sr2 CeO4 decreases with the doping of Eu3+,indicating an efficient energy transfer from the host to the doping Eu3+ions.The ene rgy transfer efficiency from the host to Eu3+was investigated in detail,and the emitting color of Sr2 CeO4:Eu3+can be easily tuned from blue to red by varying the doping concentration of Eu3+ions.Moreover,the luminescence of Dy3+-doped Sr2 CeO4 was also studied.Similar energy transfer pheno menon can be observed,and the incorporation of Dy3+into Sr2 CeO4 host leads to the characteristic emission of 4 F9/2→6 H15/2(488 nm,blue light)and 4 F9/2→6 H13/2(574 nm,yellow light)of Dy3+.The Sr2 CeO4:Ln3+fine particles with tunable luminescence are quite beneficial for its potential applications in the optoelectronic fields.
基金Project supported by the National Natural Science Foundation of China (10776014)High-Tech Foundation of Jiangsu Province (BG2007047)
文摘Superfine Sr2CeO4:RE3+ (RE=Eu, Sm) phosphors were synthesized at relatively low temperature by a modified sol-gel method using nitrates as raw materials, ethylenediaminetetraacetic acid (EDTA) as complexing agent. Single phase phosphors could be obtained at calcination temperature above 800 °C and pH value higher than 6.4 of initial solution. The as-prepared powders consisted of uniform crotch-like grains. The preparation process was monitored by thermogravimetric and differential thermal analysis (TG-DTA) ...
文摘Citric acid complexing sol-gel auto-combustion method was explored to synthesize superfine Sr2CeO4 phosphors using the inorganic salts Sr(NO3)2 and Ce(NO3)3 as raw materials together with citric acid (CA) as a chelating agent. TGDTA, XRD, SEM and photoluminescence spectra were used to investigate the formation process, microstructure and luminescent properties of the synthesized Sr2CeO4. The results show that the crystallization of Sr2CeO4 begins at about 800 ℃ and completes around 900 ℃ with an orthorhombic structure. When the calcination temperature is above 1000 ℃, Sr2CeO4 partly decomposes into SrCeO3. SEM studies show that the particles of Sr2CeO4 obtained at 900 ℃ are sphericallike shape and superfine with diameter below 100 nm. The excitation spectrum of the superfine Sr2CeO4 phosphors displays a broad band with two peaks around 290 and 350 nm respectively. The former peak is stronger than the latter one. This broad band is due to the charge transfer (CT) band of the Ce^4+ ion. Excited by a radiation of 290 nm, the superfine phosphors emit a strong blue-white fluorescence, and the emission spectrum shows a broad band with a peak around 470 nm, which can be assigned to the f→t1g transition of Ce^4+ . It is found that the emission intensity is affected by the calcination temperature.
基金supported by the National Natural Science Foundation of China (30670523)the Fundamental Research Funds for the Central Universities
文摘Novel up-conversion (UC) luminescent nano-powders, CaSc2O4:Yb3+:Er3+ were prepared with a combustion method at an ignition temperature as low as 200 oC. The CaSc2O4:Yb3+,Er3+ nano-powder had an orthorhombic CaFe2O4-type structure, and showed sphere-like morphology with an average diameter of about 30 nm. It gave strong green (525, 552 nm) and red (652–674 nm) up-conversion luminescence due to the 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ under a 980 nm semiconductor laser excitation at room temperature. The optimized doping concentrations for Yb3+ and Er3+ were 6.0 mol.% and 1.0 mol.%, respectively. Effects of ignition temperature and glycine-to-metal nitrate molar ratio on up-conversion emission intensity were also investigated. The log-log plots of luminescence intensity and pump power revealed that the 652–674 nm red emissions and 552 nm green emissions belonged to a two-photon process, while the 525 nm green emissions belonged to a three-photon process. The possible UC mechanisms were briefly discussed.
基金the National Natural Science Foundation of China (No. 51602126)the National Key Research and Development Plan of China (No. 2016YFB0303505)+1 种基金China and University of Jinan Postdoctoral Science Foundation (No. 2017M622118 and XBH1716)the 111 Project of International Corporation on Advanced Cement-based Materials (D17001).
文摘The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.
文摘A novel, high-temperature, mechano-chemical(HTMC) method was developed to synthesise singlephase Sr_2CeO_4:Eu^(3+)phosphor. Phosphors were characterised by X-ray diffraction(XRD), scanning electron microscopy(SEM), and luminescence spectra. Compared with phosphors prepared by the traditional hightemperature solid state method and citric acid gel method, single-phase Sr_2CeO_4:Eu^(3+)powders by using the HTMC method, with small average particle sizes of about 5 μm, a narrow size distribution range and uniform dispersion, were prepared at 800 ℃, and reached their maximum luminescent intensity at 900 ℃.Under ultraviolet excitation at 298 nm, the sample showed good luminescence with the strongest red light of 616 nm. However, Sr_2CeO_4:Eu^(3+)was prepared at the higher temperature of 1100 ℃ by solid state method and citric acid gel method. The particle size was too large and uneven with phosphor agglomeration by high-temperature solid state method. The luminescent intensity reached a maximum for Sr_2CeO_4:Eu^(3+)phosphor at a synthesis temperature of 1100 ℃ by using the high-temperature solid state method, and at 1200 ℃ by both citric acid gel and chemical precipitation methods. Furthermore, the advantages of the Sr_2CeO_4:Eu^(3+)powder prepared by HTMC method were discussed compared with that prepared using traditional high-temperature solid state and citric acid gel methods.