V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)i...V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.展开更多
New phosphors Sr2ZnSi2O7: M (M=Mn2+, Tb3+) were synthesized through solid-state reaction, and their photoluminescent properties under UV and VUV region were investigated. The results showed that Sr2ZnSi2O7:Mn2+...New phosphors Sr2ZnSi2O7: M (M=Mn2+, Tb3+) were synthesized through solid-state reaction, and their photoluminescent properties under UV and VUV region were investigated. The results showed that Sr2ZnSi2O7:Mn2+ emitted green light with the strongest emission peak centered at 525 nm, and its quenching concentration under 254 and 147 nm excitation occurred at x = 0.08 and 0.06, respectively. Sr2ZnSi2O7: Th3+ emitted green light with the strongest emission peak centered at 541 nm, and its quenching concentration under 254 and 147 nm excitation also appeared at y = 0.25. At 147 nm excitation, the emission intensities of Sr2Zn0.54Si2O7: 0.06Mn2+ and Sr1.75ZnSi2O7: 0.25Tb3+ phosphors were 54% and 36% of that of Zn1.96SiO4:0.04Mn2+, respectively. And their decay times (τ1/e) were about 3.18 ms and 3.9 ms, respectively.展开更多
基金supported by the National Natural Science Foundation of China (21676036)the Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing (CYB22043 and CYS22073)。
文摘V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.
基金Funded by Key Project of Natural Science for Education Department of Sichuan Province(No.14ZA0102)State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials,Southwest University of Science and Technology,Mianyang
文摘New phosphors Sr2ZnSi2O7: M (M=Mn2+, Tb3+) were synthesized through solid-state reaction, and their photoluminescent properties under UV and VUV region were investigated. The results showed that Sr2ZnSi2O7:Mn2+ emitted green light with the strongest emission peak centered at 525 nm, and its quenching concentration under 254 and 147 nm excitation occurred at x = 0.08 and 0.06, respectively. Sr2ZnSi2O7: Th3+ emitted green light with the strongest emission peak centered at 541 nm, and its quenching concentration under 254 and 147 nm excitation also appeared at y = 0.25. At 147 nm excitation, the emission intensities of Sr2Zn0.54Si2O7: 0.06Mn2+ and Sr1.75ZnSi2O7: 0.25Tb3+ phosphors were 54% and 36% of that of Zn1.96SiO4:0.04Mn2+, respectively. And their decay times (τ1/e) were about 3.18 ms and 3.9 ms, respectively.