A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions...A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions. By tracing the formation process of the sol-gel, it is found that it is necessary to reduce the amount of NO3 by dropping ethanol into the solution for forming a stable and homogeneous sol-gel. Thermogravimetric and Differential Scanning Calorimeter Analysis, x-ray diffractionmeter, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the luminescent properties of the as-synthesised Sr3A1206:Eu2+, Dy3+. The results reveal that the Sr3Al2O6 crystallises completely when the combustion ash is sintered at 1250℃. The excitation and the emission spectra indicate that the excitation broadband lies mainly in a visible range and the phosphors emit a strong light at 618 nm under the excitation of 472 nm. The afterglow of (Sr0.94Eu0.03Dy0.03)3Al2O6 phosphors sintered at 1250℃ lasts for over 1000 s when the excited source is cut off.展开更多
A series of aluminates were successfully synthesized via hydrothermal precipitated method, followed by solid state reaction at high temperature. The optimum condition to synthesize Sr3Al2O6 was determined by adjusting...A series of aluminates were successfully synthesized via hydrothermal precipitated method, followed by solid state reaction at high temperature. The optimum condition to synthesize Sr3Al2O6 was determined by adjusting the pH value of the solutions. The as prepared Sr3Al2O6 with lattice constant a=1.58556nm were characterized by X ray diffraction (XRD) and photoluminescence spectroscopy (PLS). In PL spectrum, a strongest peak at 655nm is observed, which is corresponding to red light, with an excitation wavelength of 459nm.展开更多
基金Project supported by the Key Research Project of Science and Technology of Shanxi, Shanxi Province, China (Grant No 2007031141)the Natural Science Foundation of Shanxi Province, China (Grant No 2007011061)the Scientific Research Foundation of the Higher Education Institutions of Shanxi Province, China (Grant No 20080012)
文摘A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions. By tracing the formation process of the sol-gel, it is found that it is necessary to reduce the amount of NO3 by dropping ethanol into the solution for forming a stable and homogeneous sol-gel. Thermogravimetric and Differential Scanning Calorimeter Analysis, x-ray diffractionmeter, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the luminescent properties of the as-synthesised Sr3A1206:Eu2+, Dy3+. The results reveal that the Sr3Al2O6 crystallises completely when the combustion ash is sintered at 1250℃. The excitation and the emission spectra indicate that the excitation broadband lies mainly in a visible range and the phosphors emit a strong light at 618 nm under the excitation of 472 nm. The afterglow of (Sr0.94Eu0.03Dy0.03)3Al2O6 phosphors sintered at 1250℃ lasts for over 1000 s when the excited source is cut off.
文摘为研究稀土发光纳米晶的微观结构和形貌对发光性能的影响,用凝胶-微波干燥法和凝胶-烘箱干燥法制备了花状形貌的Sr3Al2O6晶体.研究了微波干燥和烘箱干燥两种不同的干燥方式对溶胶-凝胶法制备的Sr3Al2O6∶Eu2+发光粉体粒径、形貌、团聚程度、干燥时间及发光性能等的影响,结果表明采用微波干燥不仅可以大大缩短干燥所需时间,而且有利于减弱Sr3Al2O6∶Eu2+发光粉料的团聚和团聚程度,制得了颗粒分散均匀、团聚程度低、发光强度高的Sr3Al2O6∶Eu2+花状形貌粉体.研究了Sr3Al2O6∶Eu2+发光粉体的新型形貌对发光性能的影响,微波干燥法制备的均匀分散的花状形貌发光粉体发光强度高,余辉时间长达20 min.
文摘A series of aluminates were successfully synthesized via hydrothermal precipitated method, followed by solid state reaction at high temperature. The optimum condition to synthesize Sr3Al2O6 was determined by adjusting the pH value of the solutions. The as prepared Sr3Al2O6 with lattice constant a=1.58556nm were characterized by X ray diffraction (XRD) and photoluminescence spectroscopy (PLS). In PL spectrum, a strongest peak at 655nm is observed, which is corresponding to red light, with an excitation wavelength of 459nm.