All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-impr...All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density.However,lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs.Here,a thin layer(approximately 5 nm)of g-C_(3)N_(4)is coated on the surface of a sulfide SE(Li_(6)PS_(5)Cl),which not only lowers the electronic conductivity of Li_(6)PS_(5)Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li3N at the Li/Li_(6)PS_(5)Cl interface.Additionally,the g-C_(3)N_(4)coating on the surface can substantially reduce the formation of H_(2)S when Li_(6)PS_(5)Cl is exposed to humid air.As a result,Li-Li symmetrical cells using g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl stably cycle for 1000 h with a current density of 0.2 mA cm^(-2).ASSLMBs paired with LiNbO_(3)-coated LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)exhibit a capacity of 132.8 mAh g^(-1)at 0.1 C and a high-capacity retention of 99.1%after 200 cycles.Furthermore,g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl effectively mitigates the self-discharge behavior observed in ASSLMBs.This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.展开更多
基金supported by Beijing Natural Science Foundation(JQ22028)National Natural Science Foundation of China(U21A2080)+1 种基金Jilin Province Science and Technology Major Project(20210301021GX)Ministry of Science and Technology Rare Earth Special(2022YFB3506300).
文摘All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density.However,lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs.Here,a thin layer(approximately 5 nm)of g-C_(3)N_(4)is coated on the surface of a sulfide SE(Li_(6)PS_(5)Cl),which not only lowers the electronic conductivity of Li_(6)PS_(5)Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li3N at the Li/Li_(6)PS_(5)Cl interface.Additionally,the g-C_(3)N_(4)coating on the surface can substantially reduce the formation of H_(2)S when Li_(6)PS_(5)Cl is exposed to humid air.As a result,Li-Li symmetrical cells using g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl stably cycle for 1000 h with a current density of 0.2 mA cm^(-2).ASSLMBs paired with LiNbO_(3)-coated LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)exhibit a capacity of 132.8 mAh g^(-1)at 0.1 C and a high-capacity retention of 99.1%after 200 cycles.Furthermore,g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl effectively mitigates the self-discharge behavior observed in ASSLMBs.This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs.