The BaAl2Si2O8:Eu2+blue emitting phosphor was obtained through the one-step calcination process of precursors prepared bychemical co-precipitation method. The phase structure and luminescence propertied of the phospho...The BaAl2Si2O8:Eu2+blue emitting phosphor was obtained through the one-step calcination process of precursors prepared bychemical co-precipitation method. The phase structure and luminescence propertied of the phosphor were investigated usingX-ray diffraction (XRD) and a fluorescence spectrophotometer. The excitation spectrum exhibited a broad band between 230nm and 400 nm and the emission peaking at about 470 nm was observed, which originated from the allowed f-d transition ofEu2+ions at Ba2+sites. Owing to the different optimal concentrations under different excitation wavelengths (254 nm and 365nm), the energy-transfer mechanism in this phosphor has changed from the dipole-dipole interaction to the exchange interac-tion of Eu2+ions.展开更多
A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adj...A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adjusting pH value of the system. The morphologies of precursor were characterized by transmission electron microscope (TEM). The structure and optical properties of the phosphor powders were systematically investigated by means of X-ray diffraction and spectrofluorometry. TEM images have reflected the core-shell structure and quasi-spherical morphology of the precursor particles. It was found that the single-phase Sr3MgSi2O8 crystalline structures were obtained at 1050 and 1250 ℃ for the samples prepared with the nano-coating method and the solid state reaction, respectively. The emission intensities of the phosphors prepared by the present method were higher than those by the conventional process. Also, the afterglow characteristic was better than that prepared by solid-state reaction in the comparable condition.展开更多
In this paper,we report on long-persistence white phosphor SrAl2Si2O8:Eu2+,Dy3+ synthesized by the sol-gel method.The luminescent materials prepared by the sol-gel method have many advantages,such as uniform compositi...In this paper,we report on long-persistence white phosphor SrAl2Si2O8:Eu2+,Dy3+ synthesized by the sol-gel method.The luminescent materials prepared by the sol-gel method have many advantages,such as uniform composition,high purity,fine grains and low synthesis temperature.We found that SrAl2Si2O8:Eu2+,Dy3+ phosphor prepared by the sol-gel method can provide more luminescent intensity and better afterglow characteristic compared with the same phosphor prepared by solid-state method.Namely,the particle size and shape of phosphors should be optimized to obtain the maximum quantum efficiency through energy absorption.The microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm.Under 356 nm light excitation,the broadband emission of the phosphor continues from 350 to 650 nm and the emission peak is at about 414 nm,which can be viewed as the typical emission of Eu2+ ascribed to the 4f→5d transitions.展开更多
A flower-like Eu^2+ and Dy^3+ co-doped SrAl2O4 long-lasting phosphorescent (LLP) phosphor was synthesized via the inorganic- salt-based sol-gel method. The crystal structure, morphology and optical properties of t...A flower-like Eu^2+ and Dy^3+ co-doped SrAl2O4 long-lasting phosphorescent (LLP) phosphor was synthesized via the inorganic- salt-based sol-gel method. The crystal structure, morphology and optical properties of the composite were characterized. X-ray diffraction diffusion (XRD) data and DSC-TG curves of the phosphor revealed that the SrAl2O4 crystallites have been formed after the precursor was calcined at 900 ℃ and to be single-phase SrA1204 at 1100 ℃. The SEM photographs indicated that the sample exhibited a universal flower-like morphology with crystallite size of about l-2μm. After being irradiated with ultraviolet (UV) light, the flower-like phosphor emitted long-lasting green phosphorescence with an excitation peak at 365 nm and emission peak at 500 nm which was ascribed to the characteristic 5d-4f transition of Eu^2+. Both the PL spectra and the luminance decay curve revealed that this phosphor exhibited efficient luminescence and long lasting properties.展开更多
A series of Eu3+ and Dy3+ doped/co-doped as well as un-doped BaB2Si2Os phosphors were synthesized via solid state reaction method. The PL result showed typical blue and green emission from Dy3+ and red emission fro...A series of Eu3+ and Dy3+ doped/co-doped as well as un-doped BaB2Si2Os phosphors were synthesized via solid state reaction method. The PL result showed typical blue and green emission from Dy3+ and red emission from Eu3+. The f-f transitions in- volving the lanthanide ions along with dopant site occupancy were discussed thoroughly. Phonon assisted energy transfer process was observed from Eu3+ to Dy3+, which enhanced the emissions of Dy3+. Combinations of the emissions from Eu3+ and Dy3+ showed a possible white to red tuneable emission on the CIE diagram. The white warmth emissions of the phosphor were revealed to be ad- justable through designing the dopant concentration and excitation wavelengths. An unusual energy transfer that originated from Eu3+ to Dy3+ was also discovered and the energy transfer mechanism was discussed. Proposed energy transfer mechanism was investigated using luminescence decay lifetime. All the phosphor exhibited efficient excitation in the UV range which matched well with the emissions from GaN-based LED chips. This presented the BaB2Si208 phosphor as a promising candidate for white LED applications. The effects of doping on the structural properties and the optical band gap of BaB2Si208 phosphor were also discussed in this study.展开更多
基金supported by the Scientific and Technological Project of Chongqing, China (Grant No. CSTC, 2009AB4171)the Innovation Foundation for Technology Based Firms of Ministry of Science and Technology, China (Grant No. 04C26225100807)
文摘The BaAl2Si2O8:Eu2+blue emitting phosphor was obtained through the one-step calcination process of precursors prepared bychemical co-precipitation method. The phase structure and luminescence propertied of the phosphor were investigated usingX-ray diffraction (XRD) and a fluorescence spectrophotometer. The excitation spectrum exhibited a broad band between 230nm and 400 nm and the emission peaking at about 470 nm was observed, which originated from the allowed f-d transition ofEu2+ions at Ba2+sites. Owing to the different optimal concentrations under different excitation wavelengths (254 nm and 365nm), the energy-transfer mechanism in this phosphor has changed from the dipole-dipole interaction to the exchange interac-tion of Eu2+ions.
基金Project supported by the National Natural Science Foundation (No. 20376009) and the Liaoning Natural Science Foundation (No. 20032129) of China.
文摘A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adjusting pH value of the system. The morphologies of precursor were characterized by transmission electron microscope (TEM). The structure and optical properties of the phosphor powders were systematically investigated by means of X-ray diffraction and spectrofluorometry. TEM images have reflected the core-shell structure and quasi-spherical morphology of the precursor particles. It was found that the single-phase Sr3MgSi2O8 crystalline structures were obtained at 1050 and 1250 ℃ for the samples prepared with the nano-coating method and the solid state reaction, respectively. The emission intensities of the phosphors prepared by the present method were higher than those by the conventional process. Also, the afterglow characteristic was better than that prepared by solid-state reaction in the comparable condition.
文摘In this paper,we report on long-persistence white phosphor SrAl2Si2O8:Eu2+,Dy3+ synthesized by the sol-gel method.The luminescent materials prepared by the sol-gel method have many advantages,such as uniform composition,high purity,fine grains and low synthesis temperature.We found that SrAl2Si2O8:Eu2+,Dy3+ phosphor prepared by the sol-gel method can provide more luminescent intensity and better afterglow characteristic compared with the same phosphor prepared by solid-state method.Namely,the particle size and shape of phosphors should be optimized to obtain the maximum quantum efficiency through energy absorption.The microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm.Under 356 nm light excitation,the broadband emission of the phosphor continues from 350 to 650 nm and the emission peak is at about 414 nm,which can be viewed as the typical emission of Eu2+ ascribed to the 4f→5d transitions.
基金Project supported by the National Natural Science Foundation of China (20671042,50872045)Natural Science Foundation of Guangdong Province (05200555,7005918)
文摘A flower-like Eu^2+ and Dy^3+ co-doped SrAl2O4 long-lasting phosphorescent (LLP) phosphor was synthesized via the inorganic- salt-based sol-gel method. The crystal structure, morphology and optical properties of the composite were characterized. X-ray diffraction diffusion (XRD) data and DSC-TG curves of the phosphor revealed that the SrAl2O4 crystallites have been formed after the precursor was calcined at 900 ℃ and to be single-phase SrA1204 at 1100 ℃. The SEM photographs indicated that the sample exhibited a universal flower-like morphology with crystallite size of about l-2μm. After being irradiated with ultraviolet (UV) light, the flower-like phosphor emitted long-lasting green phosphorescence with an excitation peak at 365 nm and emission peak at 500 nm which was ascribed to the characteristic 5d-4f transition of Eu^2+. Both the PL spectra and the luminance decay curve revealed that this phosphor exhibited efficient luminescence and long lasting properties.
基金supported by Fundamental Research Grant Scheme of Malaysia(J130000.2526.03H97)the National Natural Science Foundation of China(51372142)
文摘A series of Eu3+ and Dy3+ doped/co-doped as well as un-doped BaB2Si2Os phosphors were synthesized via solid state reaction method. The PL result showed typical blue and green emission from Dy3+ and red emission from Eu3+. The f-f transitions in- volving the lanthanide ions along with dopant site occupancy were discussed thoroughly. Phonon assisted energy transfer process was observed from Eu3+ to Dy3+, which enhanced the emissions of Dy3+. Combinations of the emissions from Eu3+ and Dy3+ showed a possible white to red tuneable emission on the CIE diagram. The white warmth emissions of the phosphor were revealed to be ad- justable through designing the dopant concentration and excitation wavelengths. An unusual energy transfer that originated from Eu3+ to Dy3+ was also discovered and the energy transfer mechanism was discussed. Proposed energy transfer mechanism was investigated using luminescence decay lifetime. All the phosphor exhibited efficient excitation in the UV range which matched well with the emissions from GaN-based LED chips. This presented the BaB2Si208 phosphor as a promising candidate for white LED applications. The effects of doping on the structural properties and the optical band gap of BaB2Si208 phosphor were also discussed in this study.