Long-lasting SrAl2O4∶Eu, Dy phosphor was successfully prepared from a mesoporous precursor. The precursor was synthesized by templating method using nonionic Polyethylene Oxide (PEO) as surfactants, which was proved ...Long-lasting SrAl2O4∶Eu, Dy phosphor was successfully prepared from a mesoporous precursor. The precursor was synthesized by templating method using nonionic Polyethylene Oxide (PEO) as surfactants, which was proved by TG-DTG, X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) analysis. The analysis results indicated that regular cylindrical-to-hexagonal shaped pores with several nanometers were obtained. The structure and morphology of the SrAl2O4∶Eu, Dy phosphor by templating method was characterized by XRD and Scanning Electron Microscopy (SEM). The XRD results showed that a pure SrAl2O4 phase formed at 900 ℃ by templating method. The SEM morphologies of the obtained phosphors prepared by templating synthesis were uniform and porous multicrystalline with average diameter size of 5 μm. The broad-band UV-excited SrAl2O4∶Eu, Dy phosphor derived from a mosoporous precursor was observed at λmax=515 nm due to the transitions from the 4f65d1 to the 4f7 configurations of Eu2+ ion. The main excitation and emission intensity of the phosphor with this method were stronger than that obtained by solid state reaction method. And the obtained long-lasting phosphor with this method revealed a better afterglow compared to the phosphor prepared through solid state reaction method.展开更多
The long afterglow SrAl_2O_4: Dy, Eu phosphor is liable tohydrolyze in water with deterioration of the lumin- escent property.SrAl_2O_4: Dy, Eu phosphors were therefore heated at 60-90 deg. C inTEOS sol to form a surf...The long afterglow SrAl_2O_4: Dy, Eu phosphor is liable tohydrolyze in water with deterioration of the lumin- escent property.SrAl_2O_4: Dy, Eu phosphors were therefore heated at 60-90 deg. C inTEOS sol to form a surface gel and then heat-treated at 400 deg. C toobtain SiO_2 coated phosphors. Observation by ?Transmission ElectronMicroscope (TE) and X- ray photoelectron spectroscopy (XPS) showsthat a thin silica film forms on the surface of the phosphors. Thecoating procedure can be illustrated by a four-step process and thetransparent silica film can suppress the hydrolysis process, so thatthe luminescent properties of the phosphors are unimpaired or evenbetter.展开更多
基金the National Natural Science Foundation of China (20376009)
文摘Long-lasting SrAl2O4∶Eu, Dy phosphor was successfully prepared from a mesoporous precursor. The precursor was synthesized by templating method using nonionic Polyethylene Oxide (PEO) as surfactants, which was proved by TG-DTG, X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) analysis. The analysis results indicated that regular cylindrical-to-hexagonal shaped pores with several nanometers were obtained. The structure and morphology of the SrAl2O4∶Eu, Dy phosphor by templating method was characterized by XRD and Scanning Electron Microscopy (SEM). The XRD results showed that a pure SrAl2O4 phase formed at 900 ℃ by templating method. The SEM morphologies of the obtained phosphors prepared by templating synthesis were uniform and porous multicrystalline with average diameter size of 5 μm. The broad-band UV-excited SrAl2O4∶Eu, Dy phosphor derived from a mosoporous precursor was observed at λmax=515 nm due to the transitions from the 4f65d1 to the 4f7 configurations of Eu2+ ion. The main excitation and emission intensity of the phosphor with this method were stronger than that obtained by solid state reaction method. And the obtained long-lasting phosphor with this method revealed a better afterglow compared to the phosphor prepared through solid state reaction method.
基金This project is financially supported by the National Natural Science Foundation of China (No. 59872016)
文摘The long afterglow SrAl_2O_4: Dy, Eu phosphor is liable tohydrolyze in water with deterioration of the lumin- escent property.SrAl_2O_4: Dy, Eu phosphors were therefore heated at 60-90 deg. C inTEOS sol to form a surface gel and then heat-treated at 400 deg. C toobtain SiO_2 coated phosphors. Observation by ?Transmission ElectronMicroscope (TE) and X- ray photoelectron spectroscopy (XPS) showsthat a thin silica film forms on the surface of the phosphors. Thecoating procedure can be illustrated by a four-step process and thetransparent silica film can suppress the hydrolysis process, so thatthe luminescent properties of the phosphors are unimpaired or evenbetter.