A series of SrIn2 O4 :Eu^3+ phosphors are synthesized by a high temperature solid-state method, and their luminescent properties are investigated. They can be excited by 395-nm radiation, and produce red emission (...A series of SrIn2 O4 :Eu^3+ phosphors are synthesized by a high temperature solid-state method, and their luminescent properties are investigated. They can be excited by 395-nm radiation, and produce red emission (619 nm); however, they have a low absorption of near-ultraviolet light with the wavelength of 400nm–405 nm. When co-doped with A^+ (A=Li, Na, K), the emission intensity of SrIn2O4 :Eu^3+ is significantly enhanced, but its emission and excitation spectral profile is unchanged. With co-doping Sm^3+ , not only is the emission intensity of SrIn2 O4 :Eu^3+ enhanced, but also the absorption is broadened and strengthened in the range of 400 nm–405nm. The effect of Sm^3+ -doped content on the emission intensity of SrIn2O4 :Eu^3+ , Sm^3+ is investigated, and the optimal Sm^3+ content is 0.02 mol.展开更多
采用传统的高温固相法制备一种新型的红色荧光粉Ba_(6)Gd_(2)Ti_(4)O_(17):Sm^(3+),并通过X射线衍射(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)、荧光(photoluminescence,PL)光谱及色坐标表征系列样...采用传统的高温固相法制备一种新型的红色荧光粉Ba_(6)Gd_(2)Ti_(4)O_(17):Sm^(3+),并通过X射线衍射(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)、荧光(photoluminescence,PL)光谱及色坐标表征系列样品的物相、形貌和发光性能.PL光谱表明该荧光粉可以被近紫外光有效激发,在407 nm近紫外光激发下,发射光谱由四个发射峰组成,最强发射峰位于616 nm处,归结为Sm^(3+)的^(4)G_(5/2)→^(6)H_(7/2)跃迁.随着Sm^(3+)掺杂量的增加,荧光粉的发光强度先增大后减小,最佳掺杂比例(物质的量分数)为3%.系列掺杂比例荧光粉的色坐标基本不变,均位于红光区.研究结果表明,该荧光粉是一种具有应用前景的新型白光发光二极管(light-emitting diode,LED)用红色荧光粉.展开更多
As a kind of non-destructive testing method,magnetic particle inspection is widely used in the fields of aviation and high-speed rail.The properties of magnetic fluorescent bifunctional composites,such as fluorescence...As a kind of non-destructive testing method,magnetic particle inspection is widely used in the fields of aviation and high-speed rail.The properties of magnetic fluorescent bifunctional composites,such as fluorescence intensity and magnetic properties,have increasing demands in magnetic particle inspection.Rare earth compounds offer potential as novel materials for fluorescent magnetic bifunctional composites due to their excellent optical properties and extremely narrow emission spectra.In this work,the rare earth fluorescent material Y_(2)O_(2)S:Eu^(3+) was synthesized by solid-state reaction method.Fe_(3)O_(4)nanoparticles prepared by hydrothermal method were uniformly coated on the Y_(2)O_(2)S:Eu^(3+) particles through physical adsorption of surfactants.The obtained Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) exhibits dark red color under the ultraviolet light.In additio n,X-ray diffractio n,morphology,photoluminescence and hyste resis loop of Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) were investigated.The luminescence mechanism of Y_(2)O_(2)S:Eu^(3+) is described in detail Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) displays good paramagnetism and has a good controllability under a magnetic field.The magnetic particle inspection of Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) was performed using a 4-pole electromagnet and a test piece shim.The magnetic fluorescent bifunctional composite presented in this work can be applied for non-destructive testing.展开更多
A series of long afterglow phosphors, Eu2+, Dy3+, with different iron content were prepared by nano-coating process. The resulted precursors were characterized by Transmission Electron Microscope (TEM), which suggeste...A series of long afterglow phosphors, Eu2+, Dy3+, with different iron content were prepared by nano-coating process. The resulted precursors were characterized by Transmission Electron Microscope (TEM), which suggested that the precursor particles had nanometer size distribution. The optical quenching of iron impurity on the phosphor powders were investigated by X-Ray powder Diffraction (XRD) and photoluminescence methods. The XRD indicates that a pure monoclinic SrAl2O4∶Eu2+, Dy3+ was formed at 1200 ℃ and iron impurity up to 296.36×10-4% had no effect on the SrAl2O4∶Eu2+, Dy3+ phase structure. However, the luminescence intensity were strongly dependent on the trace iron impurity, which might be explained that iron displace the aluminium and form Fe-O bond, which competed energy with Eu2+ and transfer red them to infrared sites.展开更多
Sm^(3+), Eu^(3+)co-coped Ba_(3)Bi_(2)(PO_(4))_(4) phosphors,as potential phosphors for white light-emitting diode applications, were synthesized through the solid-state reaction method for the first time. The crystal ...Sm^(3+), Eu^(3+)co-coped Ba_(3)Bi_(2)(PO_(4))_(4) phosphors,as potential phosphors for white light-emitting diode applications, were synthesized through the solid-state reaction method for the first time. The crystal structure,absorption spectra, photoluminescence properties, decay time, energy transfer mechanism, temperature-dependent properties, and Commission International De L’Eclairage(CIE) chromaticity coordinates were investigated systematically. The pure eulytite-type Ba_(3)Bi_(2)(PO_(4))_(4) phase was obtained after heating at 980 ℃ for 5 h. A notably enhanced absorption efficiency at 393 nm was observed when Sm^(3+), as a sensitizer, was doped into Ba_(3)Bi_(1.82)(PO_(4))_(4): 0.18 Eu^(3+)and the band gap of the Ba_(3)Bi_(2)(PO_(4))_(4) host was estimated to be 4.19 eV. The emission intensity of Ba_(3)Bi_(1.82)(PO_(4))_(4): 0.18 Eu^(3+)was significantly enhanced when Sm^(3+)was co-doped. The existence and mechanism of energy transfer from Sm^(3+) to Eu^(3+)were evaluated by photoluminescence spectra and decay time measurements. The CIE chromaticity coordinate of Ba3 Bi1.75(PO4)4: 0.07 Sm^(3+), 0.18 Eu^(3+) phosphor was calculated to be(0.5746, 0.4197), respectively.展开更多
In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials ...In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+) had obvious influence on the afterglow of fiber samples.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 50902042)the Natural Science Foundation of Hebei Province, China(Grant Nos. E2009000209 and E2010000283)+1 种基金the Education Bureau Foundation of Hebei Province, China (Grant No. 2009313)the Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, China (Grant No. 2010LOI12)
文摘A series of SrIn2 O4 :Eu^3+ phosphors are synthesized by a high temperature solid-state method, and their luminescent properties are investigated. They can be excited by 395-nm radiation, and produce red emission (619 nm); however, they have a low absorption of near-ultraviolet light with the wavelength of 400nm–405 nm. When co-doped with A^+ (A=Li, Na, K), the emission intensity of SrIn2O4 :Eu^3+ is significantly enhanced, but its emission and excitation spectral profile is unchanged. With co-doping Sm^3+ , not only is the emission intensity of SrIn2 O4 :Eu^3+ enhanced, but also the absorption is broadened and strengthened in the range of 400 nm–405nm. The effect of Sm^3+ -doped content on the emission intensity of SrIn2O4 :Eu^3+ , Sm^3+ is investigated, and the optimal Sm^3+ content is 0.02 mol.
基金supported by the National Natural Science Foundation of China (51927810)。
文摘As a kind of non-destructive testing method,magnetic particle inspection is widely used in the fields of aviation and high-speed rail.The properties of magnetic fluorescent bifunctional composites,such as fluorescence intensity and magnetic properties,have increasing demands in magnetic particle inspection.Rare earth compounds offer potential as novel materials for fluorescent magnetic bifunctional composites due to their excellent optical properties and extremely narrow emission spectra.In this work,the rare earth fluorescent material Y_(2)O_(2)S:Eu^(3+) was synthesized by solid-state reaction method.Fe_(3)O_(4)nanoparticles prepared by hydrothermal method were uniformly coated on the Y_(2)O_(2)S:Eu^(3+) particles through physical adsorption of surfactants.The obtained Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) exhibits dark red color under the ultraviolet light.In additio n,X-ray diffractio n,morphology,photoluminescence and hyste resis loop of Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) were investigated.The luminescence mechanism of Y_(2)O_(2)S:Eu^(3+) is described in detail Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) displays good paramagnetism and has a good controllability under a magnetic field.The magnetic particle inspection of Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) was performed using a 4-pole electromagnet and a test piece shim.The magnetic fluorescent bifunctional composite presented in this work can be applied for non-destructive testing.
基金the National Natural Science Foundation of China (20376009)
文摘A series of long afterglow phosphors, Eu2+, Dy3+, with different iron content were prepared by nano-coating process. The resulted precursors were characterized by Transmission Electron Microscope (TEM), which suggested that the precursor particles had nanometer size distribution. The optical quenching of iron impurity on the phosphor powders were investigated by X-Ray powder Diffraction (XRD) and photoluminescence methods. The XRD indicates that a pure monoclinic SrAl2O4∶Eu2+, Dy3+ was formed at 1200 ℃ and iron impurity up to 296.36×10-4% had no effect on the SrAl2O4∶Eu2+, Dy3+ phase structure. However, the luminescence intensity were strongly dependent on the trace iron impurity, which might be explained that iron displace the aluminium and form Fe-O bond, which competed energy with Eu2+ and transfer red them to infrared sites.
基金financially supported by the National Natural Science Foundation of China(No.51762010)Guizhou Provincial Science and Technology Planning Project(No.2018-5781)Guizhou Provincial High-level Innovative Talents(No.2015-4006)。
文摘Sm^(3+), Eu^(3+)co-coped Ba_(3)Bi_(2)(PO_(4))_(4) phosphors,as potential phosphors for white light-emitting diode applications, were synthesized through the solid-state reaction method for the first time. The crystal structure,absorption spectra, photoluminescence properties, decay time, energy transfer mechanism, temperature-dependent properties, and Commission International De L’Eclairage(CIE) chromaticity coordinates were investigated systematically. The pure eulytite-type Ba_(3)Bi_(2)(PO_(4))_(4) phase was obtained after heating at 980 ℃ for 5 h. A notably enhanced absorption efficiency at 393 nm was observed when Sm^(3+), as a sensitizer, was doped into Ba_(3)Bi_(1.82)(PO_(4))_(4): 0.18 Eu^(3+)and the band gap of the Ba_(3)Bi_(2)(PO_(4))_(4) host was estimated to be 4.19 eV. The emission intensity of Ba_(3)Bi_(1.82)(PO_(4))_(4): 0.18 Eu^(3+)was significantly enhanced when Sm^(3+)was co-doped. The existence and mechanism of energy transfer from Sm^(3+) to Eu^(3+)were evaluated by photoluminescence spectra and decay time measurements. The CIE chromaticity coordinate of Ba3 Bi1.75(PO4)4: 0.07 Sm^(3+), 0.18 Eu^(3+) phosphor was calculated to be(0.5746, 0.4197), respectively.
基金Project supported by the National Natural Science Foundation of China(51503082)the Fundamental Research Funds for the Central Universities(JUSRP51505,JUSRP116020)Jiangsu Province Ordinary University Academic Degree Graduate Student Scientific Research Innovation Projects(KYLX16-0791)
文摘In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+) had obvious influence on the afterglow of fiber samples.