We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and u...We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.展开更多
The Sr0.95Ba0.05 TiO3 (SBT) nanometer film is prepared on the commercially available Pt/TiO2/SiO2/Si substrate by radio-frequency magnetron sputtering. The x-ray diffraction pattern and the scanning electron microsc...The Sr0.95Ba0.05 TiO3 (SBT) nanometer film is prepared on the commercially available Pt/TiO2/SiO2/Si substrate by radio-frequency magnetron sputtering. The x-ray diffraction pattern and the scanning electron microscope image of the cross-sectional profile of the SBT nanometer film are depicted. The memristive mechanism is inferred. The mathematical model M(q) = 12.3656 - 267.4038|q(t)|is calculated, where M(q) denotes the memristance depending on the quantity of electric charge, and q(t) denotes the quantity of electric charge depending on the time. The theoretical I-V characteristics of the SBT nanometer film are obtained by the mathematical model. The results show that the theoretical I-V characteristics are consistent with the measured I-V characteristics. Moreover, the mathematical model could guide the research on applications of the memristor.展开更多
SrTiOs (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical propert...SrTiOs (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical properties were investigated. It was found that the transition from amorphous phase to polycrystalline phase occurred at the substrate temperatures 300-400℃. Their crystallinity became better when the substrate temperatures further increased. The dielectric and leakage current measurements were carried out by using the Si/STO/Pt metal-insulator-semiconductor (MIS) structures at room temperature. It was found that the fixed charge density decreased and both the interface trap density and the dielectric constant increased when the substrate temperatures were increased. The leakage current mechanisms for STO MIS structures with STO films prepared at 700℃ followed the space charge limited current (SCLC) under the low applied electric field and the Poole-Frenkel emission under the high one. In addition, the resistivity for films prepared at 700℃ was higher than 10^11Ω.cm under the voltage lower than 10V (corresponding to the electric field of 1.54×10^3kV.cm^-1). It suggested that the STO films prepared at 700℃ were suitable for acting as the insulator of metal-ferroelectric-insulator-semiconductor (MFIS) structures.展开更多
Here I will review recent progress on the study of dielectric SrTiO3 (STO) thin films. In our work, laser molecular beam epitaxy has been used to prepare multilayer heterostructures consisting of dielectric STO and ...Here I will review recent progress on the study of dielectric SrTiO3 (STO) thin films. In our work, laser molecular beam epitaxy has been used to prepare multilayer heterostructures consisting of dielectric STO and high temperature superconducting YBa2Cu3Oy (YBCO) thin films for tunable applications. Since the tunability of the dielectric constant and dielectric loss of STO are the key parameters determining the performance of tunable devices and hence the feasibility of this technology, the correlations between the deposition parameters of STO thin films, their structural characteristics, and dielectric properties were studied. An enhanced tunability of 74.7%, comparable to that of STO single-crystal, was observed in our grown STO thin films suitable for tunable YBCO applications. On the other hand, we have grown epitaxial STO (110) films on Si without any buffer layer. The nature of epitaxial growth and interfacial structures of the grown films were examined by various techniques, such as Laue diffraction, high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy. The in-plane alignments for the STO (110) films grown directly on Si (100) was found as STO//Si and STO//Si . HRTEM study has showed a crystalline transition across the STO/Si interface, indicating it is free from any amorphous oxide layer. We provide clear evidence that the interface mainly consists of Sr silicate phase. The results suggest that such Sr silicate interfacial layer exhibits favourable structural and chemical properties that are particularly useful for epitaxial STO (110) growth on Si. Such STO thin films will be useful for practical applications.展开更多
The alternation from bipolar to unipolar resistive switching is observed in perovskite La0.01Sr0.99TiO3 thin films. These two switching modes can be activated separately depending on the compliance current (Icomp) d...The alternation from bipolar to unipolar resistive switching is observed in perovskite La0.01Sr0.99TiO3 thin films. These two switching modes can be activated separately depending on the compliance current (Icomp) during the electroforming process: with a higher Icomp (5 mA) the unipolar resistance switching behavior is measured, while the bipolar resistance switching behavior is observed with a lower Icomp (1 mA). On the basis of I–V characteristics, the switching mechanisms for the URS and BRS modes are considered as being a change in the Schottky-like barrier height and/or width at the Pt/La-SrTiO3 interface and the formation and disruption of conduction filaments, respectively.展开更多
Spinel (O01)-orientated Mn304 thin films on Nb-doped SrTi03 (001) substrates are fabricated via the pulsed laser deposition method. X-ray diffraction and high-resolution transmission electron microscopy indicate t...Spinel (O01)-orientated Mn304 thin films on Nb-doped SrTi03 (001) substrates are fabricated via the pulsed laser deposition method. X-ray diffraction and high-resolution transmission electron microscopy indicate that the as-prepared epitaxial fihn is well crystaiHzed. In the film plane the orientation relationship between the film and the substrate is [lOOjMn3 04 ||[110] Nb-doped SrTiO3. After an electroforming process, the film shows bipolar nonvolatile resistance switching behavior. The positive voltage bias drives the sample into a low resistance state, while the negative voltage switches it back to a high resistance state. The switching polarity is different from the previous studies. The complex impedance measurement suggests that the resistance switching behavior is of filament type. Due to the performance reproducibility and state stability, Mn3O4 might be a promising candidate for the resistive random access memory devices.展开更多
We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to...We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single-UC FeS, while it has been significantly reduced in the double-UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of the FeS thin film reveal the electronic doping effect of single-UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximately 1.5?meV are observed in the films of both thicknesses at 4.6?K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.展开更多
We report the growth process of FeTe1-xSex (0 〈 x 〈 1) monolayer films on SrTi03 (STO) substrates through molecular beam epitaxy and discuss the possible ways to improve the film quality. By exploring the parame...We report the growth process of FeTe1-xSex (0 〈 x 〈 1) monolayer films on SrTi03 (STO) substrates through molecular beam epitaxy and discuss the possible ways to improve the film quality. By exploring the parameters of substrate treatment, growth control and post growth annealing, we successfully obtain a series of FeTe1-xSex monolayer films. In the whole growth process, we find the significance of the temperature control through surface roughness monitored by the reflection high-energy electron diffraction and scanning tunneling microscopy. We obtain the best quality of FeSe monolayer films with the STO substrate treated at T = 900 950℃ before growth, the FeSe deposited at T = 310℃ during growth and annealed at T = 380℃ after growth. For FeTe1-xSex (x-1), both the growth temperature and annealing temperature decrease to T=260℃. According to the angle- resolved photoemission spectroscopy measurements, the superconductivity of the FeTe1-xSex film is robust and insensitive to Se concentration. All the above are instructive for further investigations of the superconductivity in FeTe1-xSex films.展开更多
We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2 ) films on SrTiO3 (001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski-...We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2 ) films on SrTiO3 (001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski-Krastanov (layer-plus-island) mode with a preferential orientation of (111). Our careful inspection of both the as-grown and post-annealed CuSe2 films at various temperatures invariably shows a Cu-terminated surface, which, depending on the annealing temperature, reconstructs into two distinct structures 2 ×√3 and √x ×√3-R30°. The Cu termi- nation is supported by the depressed density of states near the Fermi level, measured by in-situ low temperature scanning tunneling spectroscopy. Our study helps understand the preparation and surface chemistry of transition metal pyrite dichalcogenides thin films.展开更多
The identification of the switching location has been a key technology to tune the physical properties of unipolar resistive switching(RS) cells.Here we report the RS properties of Au/Ni O/Sr Ti O3(STO)/Pt memory ...The identification of the switching location has been a key technology to tune the physical properties of unipolar resistive switching(RS) cells.Here we report the RS properties of Au/Ni O/Sr Ti O3(STO)/Pt memory cells.The switching repeatability is closely related to the applied bias polarity,which is different from the scenario of the Au/STO/Pt cells reported in our previous researches.The high resistance in positive bias is greater than that in negative bias.The R(T)–R0I^2 R(T) plot of the on-state I–V curve shows a regular shape only with a slight bend and an abnormal shape with an abrupt increase and decrease under negative and positive bias,respectively.These comparative experimental results reveal that the conductance filament consisting of oxygen vacancies grows from the cathode to the anode.The spatial RS location is identified with the weaker part along the conductance filament length direction,which should be near the Ni O/STO interface and STO/Pt interface under positive and negative bias,respectively.展开更多
We have fabricated the epitaxial Nb-doped SrTiO3(NbSTO) thin films on Si substrates using a TiN film as the buffer layer.The oxygen-treatment and temperature dependence of electrical properties has been investigated.O...We have fabricated the epitaxial Nb-doped SrTiO3(NbSTO) thin films on Si substrates using a TiN film as the buffer layer.The oxygen-treatment and temperature dependence of electrical properties has been investigated.Oxygen treatment showed the surface change of NbSTO films has immense influence on the resistance switching.The resistance ratio of two resistance states decreased after oxygen treatment.With tested-temperature rising,the resistance and resistance ratio of two resistance states increased.The resistance switching of Pt/NbSTO junction as a function of oxygen-treatment and temperature can be explained by the charge trapping and detrapping process in the Pt/NbSTO interface,which will help understand the resistance switching mechanism of oxides.展开更多
Stainless steel-doped SrTiO3 thin films were fabricated by laser molecular beam epitaxy (L-MBE). Nonlinear optical property of the thin film was measured by the single beam Z-scan technique at the wavelength of 532 nm...Stainless steel-doped SrTiO3 thin films were fabricated by laser molecular beam epitaxy (L-MBE). Nonlinear optical property of the thin film was measured by the single beam Z-scan technique at the wavelength of 532 nm. Two two-phonon absorption coefficient and nonlinear refractive index were determined to be 9.37 x 10-7 m/W and 1.55 x 10-6 esu, respectively. The merit figure T was calculated to be 1.8, satisfying condition T < 1 for an optical switch. The thin film has a very promising prospect for the applications in optical device.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11190022,11334010 and 11534007the National Basic Research Program of China under Grant No 2015CB921000the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020300
文摘We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.
基金Supported by the National Natural Science Foundation of China under Grant No 61473177the Research Fund for the Doctoral Program of Higher Education of China under Grant Nos 2013371812009 and 20133718110011+4 种基金the Natural Science Foundation of Shandong Province under Grant No ZR2014FQ006the China Postdoctoral Science Foundation under Grant No 2015M582114the Shandong Postdoctoral Special Foundation under Grant No 201502017the Qingdao Science and Technology Plan Project under Grant No 15-9-1-39-jchthe Qingdao Postdoctoral Science Foundation
文摘The Sr0.95Ba0.05 TiO3 (SBT) nanometer film is prepared on the commercially available Pt/TiO2/SiO2/Si substrate by radio-frequency magnetron sputtering. The x-ray diffraction pattern and the scanning electron microscope image of the cross-sectional profile of the SBT nanometer film are depicted. The memristive mechanism is inferred. The mathematical model M(q) = 12.3656 - 267.4038|q(t)|is calculated, where M(q) denotes the memristance depending on the quantity of electric charge, and q(t) denotes the quantity of electric charge depending on the time. The theoretical I-V characteristics of the SBT nanometer film are obtained by the mathematical model. The results show that the theoretical I-V characteristics are consistent with the measured I-V characteristics. Moreover, the mathematical model could guide the research on applications of the memristor.
基金Project supported by National Natural Science Foundation (Grant Nos 60221502 and 60223006) and Shanghai R&D Foundation for Applied Materials (Grant No 0316).
文摘SrTiOs (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical properties were investigated. It was found that the transition from amorphous phase to polycrystalline phase occurred at the substrate temperatures 300-400℃. Their crystallinity became better when the substrate temperatures further increased. The dielectric and leakage current measurements were carried out by using the Si/STO/Pt metal-insulator-semiconductor (MIS) structures at room temperature. It was found that the fixed charge density decreased and both the interface trap density and the dielectric constant increased when the substrate temperatures were increased. The leakage current mechanisms for STO MIS structures with STO films prepared at 700℃ followed the space charge limited current (SCLC) under the low applied electric field and the Poole-Frenkel emission under the high one. In addition, the resistivity for films prepared at 700℃ was higher than 10^11Ω.cm under the voltage lower than 10V (corresponding to the electric field of 1.54×10^3kV.cm^-1). It suggested that the STO films prepared at 700℃ were suitable for acting as the insulator of metal-ferroelectric-insulator-semiconductor (MFIS) structures.
文摘Here I will review recent progress on the study of dielectric SrTiO3 (STO) thin films. In our work, laser molecular beam epitaxy has been used to prepare multilayer heterostructures consisting of dielectric STO and high temperature superconducting YBa2Cu3Oy (YBCO) thin films for tunable applications. Since the tunability of the dielectric constant and dielectric loss of STO are the key parameters determining the performance of tunable devices and hence the feasibility of this technology, the correlations between the deposition parameters of STO thin films, their structural characteristics, and dielectric properties were studied. An enhanced tunability of 74.7%, comparable to that of STO single-crystal, was observed in our grown STO thin films suitable for tunable YBCO applications. On the other hand, we have grown epitaxial STO (110) films on Si without any buffer layer. The nature of epitaxial growth and interfacial structures of the grown films were examined by various techniques, such as Laue diffraction, high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy. The in-plane alignments for the STO (110) films grown directly on Si (100) was found as STO//Si and STO//Si . HRTEM study has showed a crystalline transition across the STO/Si interface, indicating it is free from any amorphous oxide layer. We provide clear evidence that the interface mainly consists of Sr silicate phase. The results suggest that such Sr silicate interfacial layer exhibits favourable structural and chemical properties that are particularly useful for epitaxial STO (110) growth on Si. Such STO thin films will be useful for practical applications.
基金Project supported by the Key Projects of the National Natural Science Foundation of China(Grant No.11032010)the National Natural Science Foundation of China(Grant Nos.51072171,61274107,61176093,and 11275163)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1080)the National Basic Rearch Program of China(Grant No.2012CB326404)the Key Projects of Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.12A129)the Doctoral Program of Higher Education of China(Grant No.20104301110001)the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The alternation from bipolar to unipolar resistive switching is observed in perovskite La0.01Sr0.99TiO3 thin films. These two switching modes can be activated separately depending on the compliance current (Icomp) during the electroforming process: with a higher Icomp (5 mA) the unipolar resistance switching behavior is measured, while the bipolar resistance switching behavior is observed with a lower Icomp (1 mA). On the basis of I–V characteristics, the switching mechanisms for the URS and BRS modes are considered as being a change in the Schottky-like barrier height and/or width at the Pt/La-SrTiO3 interface and the formation and disruption of conduction filaments, respectively.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CB921904 and 2012CB927402the National Natural Science Foundation of China under Grant Nos 11074142 and 11021464the Key Project of the Ministry of Education of China under Grant No 309003
文摘Spinel (O01)-orientated Mn304 thin films on Nb-doped SrTi03 (001) substrates are fabricated via the pulsed laser deposition method. X-ray diffraction and high-resolution transmission electron microscopy indicate that the as-prepared epitaxial fihn is well crystaiHzed. In the film plane the orientation relationship between the film and the substrate is [lOOjMn3 04 ||[110] Nb-doped SrTiO3. After an electroforming process, the film shows bipolar nonvolatile resistance switching behavior. The positive voltage bias drives the sample into a low resistance state, while the negative voltage switches it back to a high resistance state. The switching polarity is different from the previous studies. The complex impedance measurement suggests that the resistance switching behavior is of filament type. Due to the performance reproducibility and state stability, Mn3O4 might be a promising candidate for the resistive random access memory devices.
基金Supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of Chinathe Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20130002120033
文摘We report the successful growth of the tetragonal FeS film with one or two unit-cell (UC) thickness on SrTiO33(001) substrates by molecular beam epitaxy. Large lattice constant mismatch with the substrate leads to high density of defects in single-UC FeS, while it has been significantly reduced in the double-UC thick film due to the lattice relaxation. The scanning tunneling spectra on the surface of the FeS thin film reveal the electronic doping effect of single-UC FeS from the substrate. In addition, at the Fermi level, the energy gaps of approximately 1.5?meV are observed in the films of both thicknesses at 4.6?K and below. The absence of coherence peaks of gap spectra may be related to the preformed Cooper-pairs without phase coherence.
基金Supported by the Ministry of Science and Technology of China under Grant Nos 2015CB921000,2016YFA0401000,2015CB921301 and 2016YFA0300300the National Natural Science Foundation of China under Grant Nos 11274381,11574371,11274362,1190020,11334012 and 11674371
文摘We report the growth process of FeTe1-xSex (0 〈 x 〈 1) monolayer films on SrTi03 (STO) substrates through molecular beam epitaxy and discuss the possible ways to improve the film quality. By exploring the parameters of substrate treatment, growth control and post growth annealing, we successfully obtain a series of FeTe1-xSex monolayer films. In the whole growth process, we find the significance of the temperature control through surface roughness monitored by the reflection high-energy electron diffraction and scanning tunneling microscopy. We obtain the best quality of FeSe monolayer films with the STO substrate treated at T = 900 950℃ before growth, the FeSe deposited at T = 310℃ during growth and annealed at T = 380℃ after growth. For FeTe1-xSex (x-1), both the growth temperature and annealing temperature decrease to T=260℃. According to the angle- resolved photoemission spectroscopy measurements, the superconductivity of the FeTe1-xSex film is robust and insensitive to Se concentration. All the above are instructive for further investigations of the superconductivity in FeTe1-xSex films.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374336 and 61176078
文摘We perform molecular beam epitaxy growth and scanning tunneling microscopy study of copper diselenide (CuSe2 ) films on SrTiO3 (001). Using a Se-rich condition, the single-phase pyrite CuSe2 grows in the Stranski-Krastanov (layer-plus-island) mode with a preferential orientation of (111). Our careful inspection of both the as-grown and post-annealed CuSe2 films at various temperatures invariably shows a Cu-terminated surface, which, depending on the annealing temperature, reconstructs into two distinct structures 2 ×√3 and √x ×√3-R30°. The Cu termi- nation is supported by the depressed density of states near the Fermi level, measured by in-situ low temperature scanning tunneling spectroscopy. Our study helps understand the preparation and surface chemistry of transition metal pyrite dichalcogenides thin films.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404093)the Foundation of Henan Provincial Science and Technology Department,China(Grant No.132102210258)+1 种基金the Research Funding from Henan Province,China(Grant Nos.15A140001,2015GGJS-021,and 17HASTIT014)the Henan University Emerging Cross and Characteristic Discipline Cultivation Program,China(Grant No.xxjc20140016)
文摘The identification of the switching location has been a key technology to tune the physical properties of unipolar resistive switching(RS) cells.Here we report the RS properties of Au/Ni O/Sr Ti O3(STO)/Pt memory cells.The switching repeatability is closely related to the applied bias polarity,which is different from the scenario of the Au/STO/Pt cells reported in our previous researches.The high resistance in positive bias is greater than that in negative bias.The R(T)–R0I^2 R(T) plot of the on-state I–V curve shows a regular shape only with a slight bend and an abnormal shape with an abrupt increase and decrease under negative and positive bias,respectively.These comparative experimental results reveal that the conductance filament consisting of oxygen vacancies grows from the cathode to the anode.The spatial RS location is identified with the weaker part along the conductance filament length direction,which should be near the Ni O/STO interface and STO/Pt interface under positive and negative bias,respectively.
基金supported by the National Natural Science Foundation of China(Grant No 11004251)the Basic Foundation of China University of Petroleum(Beijing)(Grant No.01JB0007)the Development Foundation of China University of Petroleum(Beijing)(Grant No.01JB0021)
文摘We have fabricated the epitaxial Nb-doped SrTiO3(NbSTO) thin films on Si substrates using a TiN film as the buffer layer.The oxygen-treatment and temperature dependence of electrical properties has been investigated.Oxygen treatment showed the surface change of NbSTO films has immense influence on the resistance switching.The resistance ratio of two resistance states decreased after oxygen treatment.With tested-temperature rising,the resistance and resistance ratio of two resistance states increased.The resistance switching of Pt/NbSTO junction as a function of oxygen-treatment and temperature can be explained by the charge trapping and detrapping process in the Pt/NbSTO interface,which will help understand the resistance switching mechanism of oxides.
基金This work was supported by the National Natural Science Foundation under Grant No. 5001161952.
文摘Stainless steel-doped SrTiO3 thin films were fabricated by laser molecular beam epitaxy (L-MBE). Nonlinear optical property of the thin film was measured by the single beam Z-scan technique at the wavelength of 532 nm. Two two-phonon absorption coefficient and nonlinear refractive index were determined to be 9.37 x 10-7 m/W and 1.55 x 10-6 esu, respectively. The merit figure T was calculated to be 1.8, satisfying condition T < 1 for an optical switch. The thin film has a very promising prospect for the applications in optical device.