The Eu3+-doped La2Zr207 phosphor with rod-like morphology was successfully synthesized by conventional solid state reaction and hydrothermal method. X-ray diffraction patterns, transmission electron microscopy, and p...The Eu3+-doped La2Zr207 phosphor with rod-like morphology was successfully synthesized by conventional solid state reaction and hydrothermal method. X-ray diffraction patterns, transmission electron microscopy, and photoluminescence spectra were employed to charac- terize its structure and morphology as well as luminescent properties. The results indicated that the red-emitting phosphor La2Zr207:Eu3+ had well crystallized and belonged to the cubic structure with space group of Fd3m. The as-obtained product mainly appeared as straight nanorods with an average diameter of 47 nm and length of 50-700 nm. The pos- sible growth mechanism was also discussed. It was found that under blue excitation with a wavelength of 466 nm, the La2Zr2OT:Eu3+ phosphor exhibited a characteristic red emission at 616 nm that was attributed to the hypersensitive 5D0--*TF2 electric dipole transition of Eu3+ ions. Meanwhile, it was more interesting to note that the emission of 5D1--*TFj (J=0, 1, 2) transitions and the splitting patterns of 5D0---+TFJ (J--l, 2, 4) transitions of Eu3+ ions can be observed in the luminescent spectra of La2Zr207:Eu3+. It was demonstrated that Eu3+ preferred to occupy a low symmetry site.展开更多
Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to st...Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.展开更多
采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照...采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照片显示荧光粉为2μm的不规则颗粒。当激发波长为264 nm时,发射光谱出现四个尖锐的发射峰,分别位于591(^(5)D_(0)→^(7)F_(1))、619(^(5)D_(0)→^(7)F_(2))、657(^(5)D_(0)→^(7)F_(3))和693 nm(^(5)D_(0)→^(7)F_(4))。Eu^(3+)离子之间能量传递为电偶极子-电偶极子(d-d)相互作用。YMT∶0.14Eu^(3+)荧光粉的CIE色度坐标为(0.645,0.332),与红光标准色坐标(0.67,0.33)非常接近。变温PL光谱及热激活能计算结果显示荧光粉具有一定的热稳定性,因此YMT∶Eu^(3+)是一种具有潜在应用价值的LED红色荧光粉。展开更多
文摘The Eu3+-doped La2Zr207 phosphor with rod-like morphology was successfully synthesized by conventional solid state reaction and hydrothermal method. X-ray diffraction patterns, transmission electron microscopy, and photoluminescence spectra were employed to charac- terize its structure and morphology as well as luminescent properties. The results indicated that the red-emitting phosphor La2Zr207:Eu3+ had well crystallized and belonged to the cubic structure with space group of Fd3m. The as-obtained product mainly appeared as straight nanorods with an average diameter of 47 nm and length of 50-700 nm. The pos- sible growth mechanism was also discussed. It was found that under blue excitation with a wavelength of 466 nm, the La2Zr2OT:Eu3+ phosphor exhibited a characteristic red emission at 616 nm that was attributed to the hypersensitive 5D0--*TF2 electric dipole transition of Eu3+ ions. Meanwhile, it was more interesting to note that the emission of 5D1--*TFj (J=0, 1, 2) transitions and the splitting patterns of 5D0---+TFJ (J--l, 2, 4) transitions of Eu3+ ions can be observed in the luminescent spectra of La2Zr207:Eu3+. It was demonstrated that Eu3+ preferred to occupy a low symmetry site.
文摘Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.
文摘采用溶胶-凝胶法制备出Y_(2-2 x)MgTiO_(6)∶2 x Eu^(3+)(YMT∶2 x Eu^(3+),0≤x≤0.11)新型红色荧光粉。通过X射线衍射仪(XRD)检测样品的纯度,结果显示YMT∶Eu^(3+)样品属于单斜晶系,空间群为P21/n,无其他杂相。扫描电子显微镜(SEM)照片显示荧光粉为2μm的不规则颗粒。当激发波长为264 nm时,发射光谱出现四个尖锐的发射峰,分别位于591(^(5)D_(0)→^(7)F_(1))、619(^(5)D_(0)→^(7)F_(2))、657(^(5)D_(0)→^(7)F_(3))和693 nm(^(5)D_(0)→^(7)F_(4))。Eu^(3+)离子之间能量传递为电偶极子-电偶极子(d-d)相互作用。YMT∶0.14Eu^(3+)荧光粉的CIE色度坐标为(0.645,0.332),与红光标准色坐标(0.67,0.33)非常接近。变温PL光谱及热激活能计算结果显示荧光粉具有一定的热稳定性,因此YMT∶Eu^(3+)是一种具有潜在应用价值的LED红色荧光粉。