Promoting the oxygen reduction reaction(ORR)is critical for commercialization of intermediate-temperature solid oxide fuel cells(IT-SOFCs),where Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)−δ(SFM)is a promising cathode by working as ...Promoting the oxygen reduction reaction(ORR)is critical for commercialization of intermediate-temperature solid oxide fuel cells(IT-SOFCs),where Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)−δ(SFM)is a promising cathode by working as a mixed ionic and electronic conductor.In this work,doping of In^(3+)greatly increases the oxygen vacancy concentration and the content of adsorbed oxygen species in Sr_(2)Fe_(1.5)Mo_(0.5−x)InxO_(6−δ)(SFMInx),and thus effectively promotes the ORR performance.As a typical example,SFMIn_(0.1)reduces the polarization resistance(R_(p))from 0.089 to 0.046Ω∙cm^(2)at 800°C,which is superior to those doped with other metal elements.In addition,SFMIn0.1 increases the peak power density from 0.92 to 1.47 W∙cm^(−2)at 800°C with humidified H_(2)as the fuel,indicating that In3+doping at the Mo site can effectively improve the performance of SOFC cathode material.展开更多
Electrochemical conversion of CO_(2)to CO is an economically feasible method for mitigating greenhouse gas emissions.Among various electrochemical approaches,solid oxide electrolysis cells(SOECs)show high potential fo...Electrochemical conversion of CO_(2)to CO is an economically feasible method for mitigating greenhouse gas emissions.Among various electrochemical approaches,solid oxide electrolysis cells(SOECs)show high potential for CO_(2)reduction reaction(CO_(2)-RR)due to their ability to operate at high temperatures,resulting in fast reaction kinetics and increased efficiency.Considering their main energy loss is still associated with the large overpotential at the fuel electrode,the development of the highly efficient and durable cathode for SOECs has been extensively searched after.Here,we propose an A-site doping strategy to enhance the properties of Sr_(2)Fe_(1.5)Mo_(0.5)O_(6−δ)(SFM),which improve its performance as a cathode in SOECs for CO_(2)-RR,demonstrating favorable activity and durability.The structural and physiochemical characterizations,together with DFT calculations,show that the partial replacement of Sr by Bi in the SFM double perovskite not only improves CO_(2) adsorption capability at the catalyst surface but also enhances oxygen ionic conduction inside the bulk oxide,resulting in enhanced CO_(2)electrocatalysis performance in SOECs.Specifically,a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ) (LSGM)electrolyte-supported single cell with the new Bi-doped SFM cathode demonstrates a large current density of 1620 mA cm^(−2) at a cell potential of 1.6 V at 850°C with good operational stability up to 200 h.Bi-doped SFM thus represents a highly promising cathode for ceramic CO_(2)electrolyzers and could accelerate our transition towards a carbon-neutral society.展开更多
Sc-doped Sr_(2)Fe_(1.5)Mo_(0.5)O_(6-δ)(SFMSc)was successfully synthesized by partially substituting Mo in Sr_(2)Fe_(1.5)Mo_(0.5)O_(6-δ)(SFM)with Sc,resulting in a higher proton diffusion rate in the resultant SFMSc ...Sc-doped Sr_(2)Fe_(1.5)Mo_(0.5)O_(6-δ)(SFMSc)was successfully synthesized by partially substituting Mo in Sr_(2)Fe_(1.5)Mo_(0.5)O_(6-δ)(SFM)with Sc,resulting in a higher proton diffusion rate in the resultant SFMSc sample.Theoretical calculations showed that doping Sc into SFM lowered the oxygen vacancy formation energy,reduced the energy barrier for proton migration in the oxide,and increased the catalytic activity for oxygen reduction reaction.Next,a proton-conducting solid oxide fuel cell(H-SOFC)with a single-phase SFMSc cathode demonstrated significantly higher cell performance than that of cell based on an Sc-free SFM cathode,achieving 1258 mW cm^(−2)at 700℃.The performance also outperformed that of many other H-SOFCs based on single-phase cobalt-free cathodes.Furthermore,no trade-off between fuel cell performance and material stability was observed.The SFMSc material demonstrated good stability in both the CO_(2)-containing atmosphere and the fuel cell application.The combination of high performance and outstanding stability suggests that SFMSc is an excellent cathode material for H-SOFCs.展开更多
基金acknowledge the Autonomous Region Key Research Project(No.2022D02D31)the Graduate Education Innovation Project(No.XJ2022G046)。
文摘Promoting the oxygen reduction reaction(ORR)is critical for commercialization of intermediate-temperature solid oxide fuel cells(IT-SOFCs),where Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)−δ(SFM)is a promising cathode by working as a mixed ionic and electronic conductor.In this work,doping of In^(3+)greatly increases the oxygen vacancy concentration and the content of adsorbed oxygen species in Sr_(2)Fe_(1.5)Mo_(0.5−x)InxO_(6−δ)(SFMInx),and thus effectively promotes the ORR performance.As a typical example,SFMIn_(0.1)reduces the polarization resistance(R_(p))from 0.089 to 0.046Ω∙cm^(2)at 800°C,which is superior to those doped with other metal elements.In addition,SFMIn0.1 increases the peak power density from 0.92 to 1.47 W∙cm^(−2)at 800°C with humidified H_(2)as the fuel,indicating that In3+doping at the Mo site can effectively improve the performance of SOFC cathode material.
基金financially supported by the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2021001)Natural Science Foundation of Jiangsu Province(No.BK20221312).
文摘Electrochemical conversion of CO_(2)to CO is an economically feasible method for mitigating greenhouse gas emissions.Among various electrochemical approaches,solid oxide electrolysis cells(SOECs)show high potential for CO_(2)reduction reaction(CO_(2)-RR)due to their ability to operate at high temperatures,resulting in fast reaction kinetics and increased efficiency.Considering their main energy loss is still associated with the large overpotential at the fuel electrode,the development of the highly efficient and durable cathode for SOECs has been extensively searched after.Here,we propose an A-site doping strategy to enhance the properties of Sr_(2)Fe_(1.5)Mo_(0.5)O_(6−δ)(SFM),which improve its performance as a cathode in SOECs for CO_(2)-RR,demonstrating favorable activity and durability.The structural and physiochemical characterizations,together with DFT calculations,show that the partial replacement of Sr by Bi in the SFM double perovskite not only improves CO_(2) adsorption capability at the catalyst surface but also enhances oxygen ionic conduction inside the bulk oxide,resulting in enhanced CO_(2)electrocatalysis performance in SOECs.Specifically,a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ) (LSGM)electrolyte-supported single cell with the new Bi-doped SFM cathode demonstrates a large current density of 1620 mA cm^(−2) at a cell potential of 1.6 V at 850°C with good operational stability up to 200 h.Bi-doped SFM thus represents a highly promising cathode for ceramic CO_(2)electrolyzers and could accelerate our transition towards a carbon-neutral society.
基金supported by the National Natural Science Foundation of China(51972183)the Startup Funding for Talents at the University of South China。
文摘Sc-doped Sr_(2)Fe_(1.5)Mo_(0.5)O_(6-δ)(SFMSc)was successfully synthesized by partially substituting Mo in Sr_(2)Fe_(1.5)Mo_(0.5)O_(6-δ)(SFM)with Sc,resulting in a higher proton diffusion rate in the resultant SFMSc sample.Theoretical calculations showed that doping Sc into SFM lowered the oxygen vacancy formation energy,reduced the energy barrier for proton migration in the oxide,and increased the catalytic activity for oxygen reduction reaction.Next,a proton-conducting solid oxide fuel cell(H-SOFC)with a single-phase SFMSc cathode demonstrated significantly higher cell performance than that of cell based on an Sc-free SFM cathode,achieving 1258 mW cm^(−2)at 700℃.The performance also outperformed that of many other H-SOFCs based on single-phase cobalt-free cathodes.Furthermore,no trade-off between fuel cell performance and material stability was observed.The SFMSc material demonstrated good stability in both the CO_(2)-containing atmosphere and the fuel cell application.The combination of high performance and outstanding stability suggests that SFMSc is an excellent cathode material for H-SOFCs.