A series of Sr_(2)MgSi_(2)O_(7):Tb^(3+)nanophosphors is prepared using a high-temperature solid-state reaction.The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected...A series of Sr_(2)MgSi_(2)O_(7):Tb^(3+)nanophosphors is prepared using a high-temperature solid-state reaction.The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected by Tb^(3+)ions.However,the images of the scanning electron microscope illustrate that the average size of nanoparticles becomes larger with the increase of Tb^(3+)concentration.Unlike earlier investigations on down-conversion emission of Tb^(3+)ion excited by deep ultraviolet light,in this work,the photoluminescence characteristics of Sr_(2)MgSi_(2)O_(7)nanophosphors doped with different Tb^(3+)concentrations are analyzed under 374-nm excitations.The intense green emission at 545 nm is observed at an optimal doping concentration of 1.6 mol%.The main reason for the concentration quenching is due to the electric dipole-electric dipole interaction among Tb^(3+)ions.展开更多
In an effort to improve the performance of superconductors in the field and high temperatures it is important to study the superconducting mechanism. For this reason, the cation substitution can be conducted. One of t...In an effort to improve the performance of superconductors in the field and high temperatures it is important to study the superconducting mechanism. For this reason, the cation substitution can be conducted. One of the high Tc superconductors Gd1Ba2Cu3O7−δ phase with Sr substitution has been synthesized, i.e. Gd1(Ba2−xSrx)Cu3O7−δ compound. The sample was synthesized by using a solid-state reaction method with a wet mixing, sintered for 12 hours at temperature 900°C. The synthesis results are characterized by using XRD. The results of Match-3 software analysis showed high (higher 85%) Gd1Ba2Cu3O7−δ phase was formed. The Sr substitution causes changes to the structure, i.e. the lattice parameters a, b and c, where the orthorhombicity tends to decrease with increasing Sr content. Refinement results show that based on the oxygen occupancy, the total oxygen content tends to increase.展开更多
Three alkaline earth silicate phosphors: Sr2MgSi2O7∶Eu, Dy, Gd, Sr3MgSi2O8∶Eu, Dy, Gd and Sr2MgSi2O7∶Eu, Dy were prepared and their luminescent properties were investigated. The Photoluminescence (PL) measurements ...Three alkaline earth silicate phosphors: Sr2MgSi2O7∶Eu, Dy, Gd, Sr3MgSi2O8∶Eu, Dy, Gd and Sr2MgSi2O7∶Eu, Dy were prepared and their luminescent properties were investigated. The Photoluminescence (PL) measurements indicated that the phosphors gave a longer emitting phosphorescence phenomenon by comparing with those without Gd2O3 activator, in which a better afterglow characteristic was observed by adding Gd2O3 to the phosphors. While little influence on the structure of luminescent materials was observed via XRD spectra, and obvious emission wavelength shift was exhibited due to the differences in the structure parameters of the two hosts. The results revealed that the improvement was due to nonequivalent substitution to produce more e-traps, and energy transfer from Gd3+ to Dy3+, to boost the performance of Sr2MgSi2O7∶Eu, Dy phosphor. Role of Gd3+ co-doped into Sr2MgSi2O7∶Eu, Dy matrix and the possible long-lasting phosphorescence progress were discussed.展开更多
In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials ...In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+) had obvious influence on the afterglow of fiber samples.展开更多
In order to improve the red luminescent properties,Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)was selected as a blue persistent luminescent donor phosphor,while light conversion agent was utilized to tune the persistent lumin...In order to improve the red luminescent properties,Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)was selected as a blue persistent luminescent donor phosphor,while light conversion agent was utilized to tune the persistent luminescent spectra from blue to red.Composite red luminescent material Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)/light conversion agent(SMED/LCA)was fabricated with light conversion agent and Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)at a certain mass ratio.SiO_(2)(Al2 O_(3) or MgF2)were coated on the surface of SMED/LCA through heterogeneous deposition method.The structural and optical characteristics of the resulting samples were launched in terms of X-ray diffraction and emission spectrum as well as afterglow brightness.The results demonstrate that the emission spectrum exhibits two emission bands,and the peaks are located at around 470 and 615 nm.SiO_(2),Al_(2)O_(3) and MgF_(2) are coated on the surface of SMED/LCA like a protective shell to maintain its stability and luminescent properties,the afterglow initial brightness is still up to 0.37 cd/m^(2) and the afterglow color purity calculated from CIE color coordinates is basically unchanged.展开更多
p-block metal composite oxides Sr_(1.36)Sb_(2)O_(6) and Sr_(2)Sb_(2)O_(7) synthesized by a hydrothermal method as photocatalysts in the degradation of tetracycline hydrochloride under UV light irradiation have been ex...p-block metal composite oxides Sr_(1.36)Sb_(2)O_(6) and Sr_(2)Sb_(2)O_(7) synthesized by a hydrothermal method as photocatalysts in the degradation of tetracycline hydrochloride under UV light irradiation have been extensively studied.The effects of synthesis conditions on the photocatalytic activity were discussed.The Sr_(1.36)Sb_(2)O_(6)-100°C-24 h-5 and Sr_(2)Sb_(2)O_(7)-150℃-24 h^(-2) samples prepared under optimal conditions exhibited remarkably different photocatalytic activities.The essential factors influencing the difference of photocatalytic performance were revealed.The results showed that the different photocatalytic activities observed for Sr_(1.36)Sb_(2)O_(6)and Sr_(2)Sb_(2)O_(7) could be attributed to their different electronic and crystal structures.Our work will provide a new perspective for the screening and design of p-block metal composite oxide photocatalysts to enhance the removal of organic pollutants in the environment.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11004092)the Foundation of Science and Technology Department of Liaoning Province,China(Grant No.201602455)。
文摘A series of Sr_(2)MgSi_(2)O_(7):Tb^(3+)nanophosphors is prepared using a high-temperature solid-state reaction.The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected by Tb^(3+)ions.However,the images of the scanning electron microscope illustrate that the average size of nanoparticles becomes larger with the increase of Tb^(3+)concentration.Unlike earlier investigations on down-conversion emission of Tb^(3+)ion excited by deep ultraviolet light,in this work,the photoluminescence characteristics of Sr_(2)MgSi_(2)O_(7)nanophosphors doped with different Tb^(3+)concentrations are analyzed under 374-nm excitations.The intense green emission at 545 nm is observed at an optimal doping concentration of 1.6 mol%.The main reason for the concentration quenching is due to the electric dipole-electric dipole interaction among Tb^(3+)ions.
基金This report is part of the fundamental research report with contract No.486 127/UN14.2/PNL.01.03.00/2016.
文摘In an effort to improve the performance of superconductors in the field and high temperatures it is important to study the superconducting mechanism. For this reason, the cation substitution can be conducted. One of the high Tc superconductors Gd1Ba2Cu3O7−δ phase with Sr substitution has been synthesized, i.e. Gd1(Ba2−xSrx)Cu3O7−δ compound. The sample was synthesized by using a solid-state reaction method with a wet mixing, sintered for 12 hours at temperature 900°C. The synthesis results are characterized by using XRD. The results of Match-3 software analysis showed high (higher 85%) Gd1Ba2Cu3O7−δ phase was formed. The Sr substitution causes changes to the structure, i.e. the lattice parameters a, b and c, where the orthorhombicity tends to decrease with increasing Sr content. Refinement results show that based on the oxygen occupancy, the total oxygen content tends to increase.
基金the National Natural Science Foundation (20376009)the Liaoning Natural Science Foundation(20032129) of China
文摘Three alkaline earth silicate phosphors: Sr2MgSi2O7∶Eu, Dy, Gd, Sr3MgSi2O8∶Eu, Dy, Gd and Sr2MgSi2O7∶Eu, Dy were prepared and their luminescent properties were investigated. The Photoluminescence (PL) measurements indicated that the phosphors gave a longer emitting phosphorescence phenomenon by comparing with those without Gd2O3 activator, in which a better afterglow characteristic was observed by adding Gd2O3 to the phosphors. While little influence on the structure of luminescent materials was observed via XRD spectra, and obvious emission wavelength shift was exhibited due to the differences in the structure parameters of the two hosts. The results revealed that the improvement was due to nonequivalent substitution to produce more e-traps, and energy transfer from Gd3+ to Dy3+, to boost the performance of Sr2MgSi2O7∶Eu, Dy phosphor. Role of Gd3+ co-doped into Sr2MgSi2O7∶Eu, Dy matrix and the possible long-lasting phosphorescence progress were discussed.
基金Project supported by the National Natural Science Foundation of China(51503082)the Fundamental Research Funds for the Central Universities(JUSRP51505,JUSRP116020)Jiangsu Province Ordinary University Academic Degree Graduate Student Scientific Research Innovation Projects(KYLX16-0791)
文摘In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+) had obvious influence on the afterglow of fiber samples.
基金Project supported by Natural Science Foundation of Jiangsu Province(BK20171140,BK20180629)National Natural Science Foundation of China(51803076)。
文摘In order to improve the red luminescent properties,Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)was selected as a blue persistent luminescent donor phosphor,while light conversion agent was utilized to tune the persistent luminescent spectra from blue to red.Composite red luminescent material Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)/light conversion agent(SMED/LCA)was fabricated with light conversion agent and Sr_(2)MgSi_(2)O_(7):Eu^(2+),Dy^(3+)at a certain mass ratio.SiO_(2)(Al2 O_(3) or MgF2)were coated on the surface of SMED/LCA through heterogeneous deposition method.The structural and optical characteristics of the resulting samples were launched in terms of X-ray diffraction and emission spectrum as well as afterglow brightness.The results demonstrate that the emission spectrum exhibits two emission bands,and the peaks are located at around 470 and 615 nm.SiO_(2),Al_(2)O_(3) and MgF_(2) are coated on the surface of SMED/LCA like a protective shell to maintain its stability and luminescent properties,the afterglow initial brightness is still up to 0.37 cd/m^(2) and the afterglow color purity calculated from CIE color coordinates is basically unchanged.
基金financially supported by the National Natural Science Foundation of China(21875037,51502036)the National Key Research and Development Program of China(2016YFB0302303,2019YFC1908203)the Natural Science Foundation of Distinguished Young Scholars of Fujian Province(2019J06015)。
文摘p-block metal composite oxides Sr_(1.36)Sb_(2)O_(6) and Sr_(2)Sb_(2)O_(7) synthesized by a hydrothermal method as photocatalysts in the degradation of tetracycline hydrochloride under UV light irradiation have been extensively studied.The effects of synthesis conditions on the photocatalytic activity were discussed.The Sr_(1.36)Sb_(2)O_(6)-100°C-24 h-5 and Sr_(2)Sb_(2)O_(7)-150℃-24 h^(-2) samples prepared under optimal conditions exhibited remarkably different photocatalytic activities.The essential factors influencing the difference of photocatalytic performance were revealed.The results showed that the different photocatalytic activities observed for Sr_(1.36)Sb_(2)O_(6)and Sr_(2)Sb_(2)O_(7) could be attributed to their different electronic and crystal structures.Our work will provide a new perspective for the screening and design of p-block metal composite oxide photocatalysts to enhance the removal of organic pollutants in the environment.