Presents information on a study which dealt with the error behavior and the stability analysis of a class of linear multistep methods with the Lagrangian interpolation as applied to the nonlinear delay differential eq...Presents information on a study which dealt with the error behavior and the stability analysis of a class of linear multistep methods with the Lagrangian interpolation as applied to the nonlinear delay differential equations. Methods and the basic lemmas; Analysis of convergence and stability.展开更多
This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stabilit...This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stability of onestep Runge-Kutta methods, we obtain that a multistep Runge-Kutta method for DDEs is stable iff the corresponding methods for ODEs is A-stable under suitable interpolation conditions.展开更多
基金National Natural Science Foundation of China!No.69974018 Postdoctoral Science Foundation of China.
文摘Presents information on a study which dealt with the error behavior and the stability analysis of a class of linear multistep methods with the Lagrangian interpolation as applied to the nonlinear delay differential equations. Methods and the basic lemmas; Analysis of convergence and stability.
基金the National Natural Science Foundation of China (No.69974018).
文摘This paper deals with the asymptotic behavior of multistep Runge-Kutta methods for systems of delay differential equations (DDEs). With the help of K.J.in't Hout's analytic technique for the numerical stability of onestep Runge-Kutta methods, we obtain that a multistep Runge-Kutta method for DDEs is stable iff the corresponding methods for ODEs is A-stable under suitable interpolation conditions.