This study was aimed to introduce a novel entry point for pedicle screw fixation in the thoracic spine and compare it with the traditional entry point. A novel entry point was found with the aim of improving accuracy,...This study was aimed to introduce a novel entry point for pedicle screw fixation in the thoracic spine and compare it with the traditional entry point. A novel entry point was found with the aim of improving accuracy, safety and stability of pedicle screw technique based on anatomical structures of the spine. A total of 76 pieces of normal thoracic CT images at the transverse plane and the thoracic pedicle anatomy of 6 cadaveric specimens were recruited.Transverse pedicle angle(TPA), screw length, screw placement accuracy rate and axial pullout strength of the two different entry point groups were compared. There were significant differences in the TPA, screw length, and the screw placement accuracy rate between the two groups(P〈0.05). The maximum axial pullout strength of the novel entry point group was slightly larger than that of the traditional group. However, the difference was not significant(P 〉 0.05). The novel entry point significantly improved the accuracy, stability and safety of pedicle screw placement.With reference to the advantages above, the new entry point can be used for spinal internal fixations in the thoracic spine.展开更多
Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO3 bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptor...Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO3 bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptors. The formation energies show that cation vacancies are energetically favorable in bulk LaAIO3 under O-rich conditions, while the AILa antisites are stable in reducing atmosphere. However, the same behavior does not appear in the case of LaAlO3 films. For LaO-terminated LaAlOa fihns, La or AI vacancies remain energetically favorable under O-rich and O-deficient conditions. For an AlO2-terminated surface, under O-rich condition the La interstitial atom is repelled from the outmost layer after optimization, which releases more stress leading to the decrease of total energy of the system. An AI interstitial atom has a smaller radius so that it can stay in distorted films and becomes more stable under O-deficient conditions, and the Al interstitial atoms can be another possible carrier source contribution to the conductivity of n-type interface under an ultrahigh vacuum. La and Al antisites have similar formation energy regardless of oxygen pressure. The results would be helpful to understand the defect structures of LaAlOa-related materials.展开更多
This paper presents a restricted SIRmathematicalmodel to analyze the evolution of a contagious infectious disease outbreak(COVID-19)using available data.The new model focuses on two main concepts:first,it can present ...This paper presents a restricted SIRmathematicalmodel to analyze the evolution of a contagious infectious disease outbreak(COVID-19)using available data.The new model focuses on two main concepts:first,it can present multiple waves of the disease,and second,it analyzes how far an infection can be eradicated with the help of vaccination.The stability analysis of the equilibrium points for the suggested model is initially investigated by identifying the matching equilibrium points and examining their stability.The basic reproduction number is calculated,and the positivity of the solutions is established.Numerical simulations are performed to determine if it is multipeak and evaluate vaccination’s effects.In addition,the proposed model is compared to the literature already published and the effectiveness of vaccination has been recorded.展开更多
Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system...Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.展开更多
A mathematical model with cytotoxic cells of hepatitis B virus (HBV)infection is set up based on a basic model of virus dynamics without cytotoxic cells andexperimental observation of anti-viral drag therapy for HBV i...A mathematical model with cytotoxic cells of hepatitis B virus (HBV)infection is set up based on a basic model of virus dynamics without cytotoxic cells andexperimental observation of anti-viral drag therapy for HBV infection patients. A quantitativeanalysis of dynamic behaviors shows that the model has three kinds of equilibrium points, whichrepresent the patient's complete recovery without immune ability, complete recovery with immuneability, and HBV persistent infection at the end of the treatment with drag lamivudine,respectively. Our model may provide possible quantitative interpretations for the treatments ofchronic HBV infections with the drag lamivudine, in particularly explain why the plasma virus ofNowak et al. 's patients turnover the original level after stopping the lamivudine treatment.展开更多
The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera...The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.展开更多
Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curv...Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curve and stability point curve. The envelope curve is obtained by superimposing the cyclic peaks on the monotonic stress-strain curve. The common point curve is the locus of intersection points of loading and unloading curves of the cycles. If for the same cycle, the loading and unloading are repeated several times, the intersection points of loading and unloading paths will stabilize at a lower bound. The locus of these stabilized points (lower bound points) of all cycles form the stability point curve. Therefore, the stability point curve can be used as a measure for the allowable stress for masonry under cyclic loadings. The proposed cyclic allowable stress level is associated with the accumulation of residual (plastic) strain levels as a result of cyclic loading history. The permissible stress level was found to be about two thirds of the cyclic peak stress of the specimen.展开更多
In this paper. we discuss the existence and stability of solution for two semi-homogeneous boundary value problems. The relative theorems in [1.2] are extended. Meanwhile. we obtain some new results.
A point stabilization scheme of a wheeled mobile robot (WMR) which moves on uneven surface is presented by using tuzzy control. Taking the kinematics and dynamics of the vehicle into account, the fuzzy controller is...A point stabilization scheme of a wheeled mobile robot (WMR) which moves on uneven surface is presented by using tuzzy control. Taking the kinematics and dynamics of the vehicle into account, the fuzzy controller is employed to regulate the robot based on a kinematic nonlinear state feedback control law. Herein, the fuzzy strategy is composed of two velocity control laws which are used to adjust the speed and angular velocity, respectively. Subsequently, genetic algorithm (GA) is applied to optimize the controller parameters. Through the self-optimization, a group of optimum parameters is gotten. Simulation results are presented to show the effectiveness of the control strategy.展开更多
Proposes an explicit fully discrete three-level pseudo-spectral scheme with unconditional stability for the Cahn-Hilliard equation. Equations for pseudo-spectral scheme; Analysis of linear stability of critical points.
Infectious diseases have always been a problem that threatens people's health and tuberculosis is one of the major.With the development of medical scientific research,drug-resistant infectious diseases have become...Infectious diseases have always been a problem that threatens people's health and tuberculosis is one of the major.With the development of medical scientific research,drug-resistant infectious diseases have become a more intractable threat because various drugs and antibiotics are widely used in the process of fighting against infectious diseases.In this paper,an improved dynamic model of infectious diseases considering population dynamics and drug resistance is established.The feasible region,equilibrium points and stability of the model are analyzed.Based on the existing data,this model can predict the development of the epidemic situation through numerical simulation,and put forward some relevant measures and suggestions.展开更多
Icing is one of the crucial factors that could pose great threat to flight safety,and thus research on stability and stability region of aircraft safety under icing conditions is significant for control and flight.Non...Icing is one of the crucial factors that could pose great threat to flight safety,and thus research on stability and stability region of aircraft safety under icing conditions is significant for control and flight.Nonlinear dynamical equations and models of aerodynamic coefficients of an aircraft are set up in this paper to study the stability and stability region of the aircraft under an icing condition.Firstly,the equilibrium points of the iced aircraft system are calculated and analyzed based on the theory of differential equation stability.Secondly,according to the correlation theory about equilibrium points and the stability region,this paper estimates the multidimensional stability region of the aircraft,based on which the stability regions before and after icing are compared.Finally,the results are confirmed by the time history analysis.The results can give a reference for stability analysis and envelope protection of the nonlinear system of an iced aircraft.展开更多
We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory(ILIL) including laser, beam transport and target area specifications. The laboratory was de...We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory(ILIL) including laser, beam transport and target area specifications. The laboratory was designed to host laser–target interaction experiments of more than 220 TW peak power, in flexible focusing configurations, with ultrarelativistic intensity on the target. Specifications have been established via dedicated optical diagnostic assemblies and commissioning interaction experiments. In this paper we give a summary of laser specifications available to users,including spatial, spectral and temporal contrast features. The layout of the experimental target areas is presented, with attention to the available configurations of laser focusing geometries and diagnostics. Finally, we discuss radiation protection measures and mechanical stability of the laser focal spot on the target.展开更多
At Shanghai Jiao Tong University(SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wake...At Shanghai Jiao Tong University(SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration(LWFA) scheme, multi-hundred Me V electron beams of reasonable quality are generated using 20–40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.展开更多
基金supported by the National Natural Science Foundation of China (Grant #81371968, #81371969,#81401791)the Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU (No. IRT-015)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This study was aimed to introduce a novel entry point for pedicle screw fixation in the thoracic spine and compare it with the traditional entry point. A novel entry point was found with the aim of improving accuracy, safety and stability of pedicle screw technique based on anatomical structures of the spine. A total of 76 pieces of normal thoracic CT images at the transverse plane and the thoracic pedicle anatomy of 6 cadaveric specimens were recruited.Transverse pedicle angle(TPA), screw length, screw placement accuracy rate and axial pullout strength of the two different entry point groups were compared. There were significant differences in the TPA, screw length, and the screw placement accuracy rate between the two groups(P〈0.05). The maximum axial pullout strength of the novel entry point group was slightly larger than that of the traditional group. However, the difference was not significant(P 〉 0.05). The novel entry point significantly improved the accuracy, stability and safety of pedicle screw placement.With reference to the advantages above, the new entry point can be used for spinal internal fixations in the thoracic spine.
基金Supported by the Hebei Provincial Young Top-Notch Talent Support Program under Grant No BJRC2016the Innovative Funding Project of Graduates of Hebei University under Grant No hbu2018ss62the Midwest Universities Comprehensive Strength Promotion Project
文摘Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO3 bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptors. The formation energies show that cation vacancies are energetically favorable in bulk LaAIO3 under O-rich conditions, while the AILa antisites are stable in reducing atmosphere. However, the same behavior does not appear in the case of LaAlO3 films. For LaO-terminated LaAlOa fihns, La or AI vacancies remain energetically favorable under O-rich and O-deficient conditions. For an AlO2-terminated surface, under O-rich condition the La interstitial atom is repelled from the outmost layer after optimization, which releases more stress leading to the decrease of total energy of the system. An AI interstitial atom has a smaller radius so that it can stay in distorted films and becomes more stable under O-deficient conditions, and the Al interstitial atoms can be another possible carrier source contribution to the conductivity of n-type interface under an ultrahigh vacuum. La and Al antisites have similar formation energy regardless of oxygen pressure. The results would be helpful to understand the defect structures of LaAlOa-related materials.
基金Research Partnership Program no.RP-21-09-06 from the Deanship of Scientific Research of Imam Mohammad Ibn Saud Islamic University(IMSIU).
文摘This paper presents a restricted SIRmathematicalmodel to analyze the evolution of a contagious infectious disease outbreak(COVID-19)using available data.The new model focuses on two main concepts:first,it can present multiple waves of the disease,and second,it analyzes how far an infection can be eradicated with the help of vaccination.The stability analysis of the equilibrium points for the suggested model is initially investigated by identifying the matching equilibrium points and examining their stability.The basic reproduction number is calculated,and the positivity of the solutions is established.Numerical simulations are performed to determine if it is multipeak and evaluate vaccination’s effects.In addition,the proposed model is compared to the literature already published and the effectiveness of vaccination has been recorded.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2007AA041401)Tianjin Natural Science Foundation,China (Grant Nos. 08JCZDJC18600 and 09JCZDJC23900)the University Science and Technology Development Foundation of Tianjin City,China (Grant No. 2006ZD32)
文摘Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.
文摘A mathematical model with cytotoxic cells of hepatitis B virus (HBV)infection is set up based on a basic model of virus dynamics without cytotoxic cells andexperimental observation of anti-viral drag therapy for HBV infection patients. A quantitativeanalysis of dynamic behaviors shows that the model has three kinds of equilibrium points, whichrepresent the patient's complete recovery without immune ability, complete recovery with immuneability, and HBV persistent infection at the end of the treatment with drag lamivudine,respectively. Our model may provide possible quantitative interpretations for the treatments ofchronic HBV infections with the drag lamivudine, in particularly explain why the plasma virus ofNowak et al. 's patients turnover the original level after stopping the lamivudine treatment.
基金National Nature Science Foundation(Nos.41971425,41601505)Special Fund for High Resolution Images Surveying and Mapping Application System(No.42-Y30B04-9001-19/21)。
文摘The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.
文摘Laboratory tests revealed that the behavior of brick masonry under compressive cyclic loading is characterized by three distinct stress-strain curves. These three curves are termed as envelope curve, common point curve and stability point curve. The envelope curve is obtained by superimposing the cyclic peaks on the monotonic stress-strain curve. The common point curve is the locus of intersection points of loading and unloading curves of the cycles. If for the same cycle, the loading and unloading are repeated several times, the intersection points of loading and unloading paths will stabilize at a lower bound. The locus of these stabilized points (lower bound points) of all cycles form the stability point curve. Therefore, the stability point curve can be used as a measure for the allowable stress for masonry under cyclic loadings. The proposed cyclic allowable stress level is associated with the accumulation of residual (plastic) strain levels as a result of cyclic loading history. The permissible stress level was found to be about two thirds of the cyclic peak stress of the specimen.
文摘In this paper. we discuss the existence and stability of solution for two semi-homogeneous boundary value problems. The relative theorems in [1.2] are extended. Meanwhile. we obtain some new results.
基金supported by the State Key Laboratory of Robotics and System (SKLR-2010-MS-14)the State Key Laboratory of Embedded System and Service Computing (2010-11)
文摘A point stabilization scheme of a wheeled mobile robot (WMR) which moves on uneven surface is presented by using tuzzy control. Taking the kinematics and dynamics of the vehicle into account, the fuzzy controller is employed to regulate the robot based on a kinematic nonlinear state feedback control law. Herein, the fuzzy strategy is composed of two velocity control laws which are used to adjust the speed and angular velocity, respectively. Subsequently, genetic algorithm (GA) is applied to optimize the controller parameters. Through the self-optimization, a group of optimum parameters is gotten. Simulation results are presented to show the effectiveness of the control strategy.
文摘Proposes an explicit fully discrete three-level pseudo-spectral scheme with unconditional stability for the Cahn-Hilliard equation. Equations for pseudo-spectral scheme; Analysis of linear stability of critical points.
基金This work was supported by IDRC 104519-010,CanadaShanghai Key Laboratory of acupuncture mechanism and acupoint function(14DZ2260500),China。
文摘Infectious diseases have always been a problem that threatens people's health and tuberculosis is one of the major.With the development of medical scientific research,drug-resistant infectious diseases have become a more intractable threat because various drugs and antibiotics are widely used in the process of fighting against infectious diseases.In this paper,an improved dynamic model of infectious diseases considering population dynamics and drug resistance is established.The feasible region,equilibrium points and stability of the model are analyzed.Based on the existing data,this model can predict the development of the epidemic situation through numerical simulation,and put forward some relevant measures and suggestions.
基金co-supported by the National Key Basic Research Program of China(No.2015CB755805)the National Natural Science Foundation of China(No.61374145)
文摘Icing is one of the crucial factors that could pose great threat to flight safety,and thus research on stability and stability region of aircraft safety under icing conditions is significant for control and flight.Nonlinear dynamical equations and models of aerodynamic coefficients of an aircraft are set up in this paper to study the stability and stability region of the aircraft under an icing condition.Firstly,the equilibrium points of the iced aircraft system are calculated and analyzed based on the theory of differential equation stability.Secondly,according to the correlation theory about equilibrium points and the stability region,this paper estimates the multidimensional stability region of the aircraft,based on which the stability regions before and after icing are compared.Finally,the results are confirmed by the time history analysis.The results can give a reference for stability analysis and envelope protection of the nonlinear system of an iced aircraft.
基金The ILIL-PW upgrade was established in the framework of the Italian Research Network on Extreme Light Infrastructure(ELI-Italy)funded by CNRfinancial contribution from the Eu PRAXIA project of the EU Horizon 2020 Research and Innovation Program under Grant Agreement No.653782the Line for Laser Light Ion Acceleration(L3IA)project funded by INFN,Italy。
文摘We present the main features of the ultrashort, high-intensity laser installation at the Intense Laser Irradiation Laboratory(ILIL) including laser, beam transport and target area specifications. The laboratory was designed to host laser–target interaction experiments of more than 220 TW peak power, in flexible focusing configurations, with ultrarelativistic intensity on the target. Specifications have been established via dedicated optical diagnostic assemblies and commissioning interaction experiments. In this paper we give a summary of laser specifications available to users,including spatial, spectral and temporal contrast features. The layout of the experimental target areas is presented, with attention to the available configurations of laser focusing geometries and diagnostics. Finally, we discuss radiation protection measures and mechanical stability of the laser focal spot on the target.
基金Supported by 973 National Basic Research Program of China(2013CBA01504)Natural Science Foundation of China NSFC(11121504,11334013,11175119,11374209)
文摘At Shanghai Jiao Tong University(SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration(LWFA) scheme, multi-hundred Me V electron beams of reasonable quality are generated using 20–40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.