Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive re...Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.展开更多
Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pret...Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.展开更多
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti...The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.展开更多
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and...Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.展开更多
Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high perfo...Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs.Herein,multielectron reaction occurred in VS_(4)by simple W doping strategy.W doping induces valence of partial V as V^(2+)and V^(3+)in VS_(4)structure,and then stimulates electrochemical reaction involving multi-electrons in 0.5%W-V-S.The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process.The fabricated 0.5%W-V-S delivers higher specific capacity(149.3 m A h g^(-1)at 50 m A g^(-1),which is 1.6 times higher than that of VS_(4)),superior rate capability(76 mA h g^(-1)at 1000 mA g^(-1)),and stable cycling performance(1500cycles with capacity retention ratio of 93.8%).Besides that,pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique(GITT)further confirms the enhanced Mg^(2+)storage kinetics during such multi-electron involved electrochemical reaction process.Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices.展开更多
Zhanjiang Bay is a major aquaculture area in China with many types of mariculture products(such as oysters,fish,and shrimp).The culture area and shrimp output in Zhanjiang Bay are ranked first in China.We investigated...Zhanjiang Bay is a major aquaculture area in China with many types of mariculture products(such as oysters,fish,and shrimp).The culture area and shrimp output in Zhanjiang Bay are ranked first in China.We investigated the total organic carbon(TOC),total nitrogen(TN),TOC/TN ratio,and stable isotopes(δ^(13)C and δ^(15)N) of the fish and shrimp feed,fish and shrimp feces,and sedimentary organic matter(SOM) in and around different aquaculture areas of northeastern Zhanjiang B ay to study the impact of aquaculture activities on SOM.The average TOC contents of fish and shrimp feed were 39.20%±0.91% and 39.29%±0.21%,respectively.The average TOC content in the surface sediments of the oyster culture area,the mixed(fish and shrimp) culture area,and the cage fish farm area were 0.66%,0.88%±0.10%,and 0.58%±0.19%,respectively,which may indicate that mixed culture had a greater impact on SOM.The relatively high TOC and TN contents and relatively low TOC/TN ratios,and δ^(15)N values in the upper layer of the core sediment in the mixed culture area could also support the significant influence of mixed culture.The average δ^(13)C and δ^(15)N values of fish and shrimp feed were -20.6‰±2.2‰ and 1.8‰±1.2‰,respectively,which were different from the isotopic values of SOM in the study area.δ^(13)C and δ^(15)N values for SOM in different aquaculture areas were different from those of nearby reference stations,probably reflecting the influence of aquaculture.The δ^(13)C and δ^(15)N values in the oyster culture area(-25.9‰ and6.0‰,respectively) seemed to have reduced δ^(13)C and enriched δ^(15)N relative to those of the reference station(-24.6‰ and 5.8‰,respectively).This may reflect the influence of organic matter on oyster culture.The δ^(15)N value of the station in the mixed culture area(7.1‰±0.4‰) seemed to be relatively enriched in δ^(15)N relative to that of the reference station(6.6‰).Sedimentation and the subsequent degradation of organic matter from mixed cultures may have contributed to this phenomenon.The surface sediment at the cage fish farm area seemed to be affected by fish feces and primary production based on the indication of δ^(13)C and δ^(15)N values.The sediment core at the mixed culture region(NS6) had lower TOC/TN ratios and more positive δ^(13)C and δ^(15)N values than the sediment core at the oyster culture area,suggesting a higher proportionate contribution of marine organic matter in the mixed culture area.In summary,oyster culture,mixed culture,and cage fish culture in northeastern Zhanjiang Bay had a certain degree of impact on SOM,and mixed culture had more significant influences on SOM based on the high TOC contents and the significant vertical variations of TOC/TN ratio and δ^(15)N value in the sediment of this area.This study provides new insights into the impact of aquaculture activities on SOM content.展开更多
Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and...Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.展开更多
ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.T...ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.The irrigation water infiltration in Z.jujuba gardens is complex,and understanding its mechanisms is essential for efficient water use and sustainable agriculture.This knowledge helps ensure the long-term success of jujuba cultivation.This paper describes a field experiment that investigates the infiltration process of irrigation water from Z.jujuba garden and quantifies the contribution of irrigation water to soil water at different depths using the MixSIAR model.According to the FC(Field water holding Capacity)of Z.jujuba,irrigation experiments with three volumes of 80%FC,60%FC,and 40%FC are set up in this study.The study finds that water retention is better in Z.jujuba garden soils with a higher proportion of coarse gravel in the soil particle composition.Soil water content exhibits a gradient change after irrigation,with deeper wetting front transport depth observed with increased irrigation water.Additionally,there is correlation between soil temperature and soil water content.The soil water in Z.jujuba garden generally exhibits a preferential flow signal in the 0-40 cm range.Below 40 cm,a piston flow pattern dominates.The rate of soil water infiltration increases with the amount of irrigation water.In the 0-40 cm range of the soil vertical profile,irrigation water was the main contributor to soil water.Z.jujuba demonstrated flexibility in water uptake,primarily absorbing soil water at depths of 0-40 cm.For optimal growth of Z.jujuba at this stage,40%FC irrigation is recommended.The results are expected to be valuable future irrigation practices and land use planning for Z.jujuba garden in arid zones,supporting sustainable agricultural development and water management.展开更多
The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insight...The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.展开更多
Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and wa...Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.展开更多
Consideration of stable isotopes in precipitation is valuable for investigating hydrological processes.Therefore,correcting the measured isotopic composition of precipitation under below-cloud evaporation is necessary...Consideration of stable isotopes in precipitation is valuable for investigating hydrological processes.Therefore,correcting the measured isotopic composition of precipitation under below-cloud evaporation is necessary.An accurate description of the underlying processes affecting stable isotopic composition of precipitation could help improve our understanding of the water cycle.The transitivity between monsoonal and arid climates was reflected by the evaporation rate of falling raindrops in precipitation in the Qilian Mountains,a typical transition zone between Tibetan Plateau and arid region of China.Considering 1310 precipitation event-scale samples,based on stable isotope analysis method,the mean below-cloud evaporation rate(f)in the study area was measured as 12.00%during the summer half-year(May-October).The evaporation rate on the northern slopes(12.70%)of the Qilian Mountains in China was significantly higher than that on the southern slopes(9.98%).The transition between monsoonal and arid climates was reflected in the evaporation rate of falling raindrops during precipitation in the Qilian Mountains of China.Below-cloud evaporation contributed to a noticeable enrichment of stable isotopes in the precipitation in the study area.The monthly precipitationδ^(18)O enrichment rate in the Qilian Mountains of China from May to October was 29.18%,23.35%,25.60%,22.99%,31.64%,and 14.72%,respectively.For every 1.00%increase in the evaporation rate of raindrops in Qilian Mountains of China,the changes in the concentration of oxygen isotopes from the bottom of the clouds to the ground increased by 0.92‰;however,with an evaporation rate of<5.00%,for every 1.00%increase in the evaporation rate of raindrops the changes in the concentration of oxygen isotopes from the bottom of the clouds to the ground increased by 1.00‰could also be observed.Furthermore,altitude was an important factor affecting below-cloud evaporation in the study area.展开更多
A mass flow matching model(MFMM)was established for studying the stable status of solution electrospinning.The study of the solution droplet status at the needle tip focused on various combinations of applied voltages...A mass flow matching model(MFMM)was established for studying the stable status of solution electrospinning.The study of the solution droplet status at the needle tip focused on various combinations of applied voltages and injection rates to figure out their influence on steadily fabricating polyvinyl alcohol(PVA)nanofibers prepared from PVA spinning solutions with two different mass fractions(10%and 16%).The results revealed that during the stable electrospinning,the influence resulted from the change of the injection rate approximately canceled out the impact brought by adjusting the applied voltage,leading to almost the same morphology as that of the PVA nanofibers.And the mass fraction of PVA in the spinning solution dominated the structure and the diameter distribution of the electrospun nanofibers.Under stable electrospinning conditions,the composite membrane was produced by depositing PVA nanofibers on the polyethylene terephthalate(PET)nonwoven substrate for an air filtration test.Furthermore,the prepared composite membrane exhibited a high air filtration efficiency(99.97%)and a low pressure drop(120 Pa)for 300-500 nm neutralized polystyrene latex(PSL)aerosol particles,demonstrating its potential as an alternative for a variety of commercial applications in air filtration.展开更多
The thermal diffusion column represents one method of separating stable isotopes.This method is advantageous for smallscale operations because of the simplicity of the apparatus and small inventory,especially in gas-p...The thermal diffusion column represents one method of separating stable isotopes.This method is advantageous for smallscale operations because of the simplicity of the apparatus and small inventory,especially in gas-phase operations.Consequently,it has attracted attention for its applicability in tritium and noble gas separation systems.In this study,the R cascade was used to design and determine the number of columns.A square cascade was adopted for the final design because of its flexibility,and calculations were performed to separate 20Ne and 22Ne isotopes.All the R cascades that enriched the Ne isotopes by more than 99%were investigated,the number of columns was determined,and the square cascade parameters were optimized using the specified columns.Additionally,a calculation code“RSQ_CASCADE”was developed.A unit separation factor of three was considered,and the number of studied stages ranged from 10 to 20.The results showed that the column separation power,relative total flow rate,and required number of columns were linearly related to the number of stages.The separation power and relative total flow decreased and the number of columns increased as the stage number increased.Therefore,a cascade of 85 columns is recommended to separate the stable Ne isotopes.These calculations yielded a 17-stage square cascade with five columns in each stage.By changing the stage cut,feed point,and cascade feed flow rate,the best parameters for the square cascade were determined according to the cascade and column separation powers.As the column separation power had a maximum value in cascade feed 50,it was selected for separating Ne isotopes.展开更多
Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were ...Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.展开更多
Regime shifts from submersed macrophyte dominance to phytoplankton dominance have been widely reported in small-to medium-sized shallow lakes.However,alternative stable states in large shallow lakes(surface area>50...Regime shifts from submersed macrophyte dominance to phytoplankton dominance have been widely reported in small-to medium-sized shallow lakes.However,alternative stable states in large shallow lakes(surface area>500 km^(2))remain unconfirmed.To understand the alternative stable states and the main influencing factors of submersed macrophytes in large lakes,the ecosystem states from monitoring data from 1959 to 2019 in large shallow Taihu Lake(2338 km^(2)in average depth of 2.12 m)in China were examined.Changes in submersed macrophyte coverage(C_(Mac))and phytoplankton chlorophyll a(Chl a)in the time series and their relationships with environmental factors were analyzed.During the field investigation from August 2018 to May 2019,nutrients and Chl a showed obvious heterogeneity across the lake,being generally higher in the western and northern areas and lower in the southeast area,while C_(Mac)was only observed in the eastern areas,e.g.,East Taihu Lake,Xukou Bay,and Gonghu Bay.During the long-term monitoring from 1959 to 2019 in the Central Region,Meiliang Bay,and East Taihu Lake,Chl a increased significantly in the time series.C_(Mac)varied slightly among different subareas,always at low levels(<10%)in the Central Region and Meiliang Bay but at relatively high levels in East Taihu Lake(10%–90%).Frequency distributions of response variables had no multimodality except for C_(Mac)in East Taihu Lake,with two peaks between 15%and 20%and between 55%and 60%.A dual relationship was found between Chl a and total phosphorus(TP)in the areas with and without macrophytes,while C_(Mac)showed no relationship with TP,and submersed macrophytes did not flourish in the Central Region and Meiliang Bay even when TP was at very low levels(≈10 mg/m3).Taihu Lake had similar algal turbidity(TurbAlg)as small-to mediumsized lakes but generally presented with higher values of nonalgal turbidity(TurbNonAlg),as did their contribution to total turbidity as a percentage.This study suggested that large shallow Taihu Lake may have no alternative stable states,but more evidence is needed for East Taihu Lake,which was dominated by macrophytes,as it remains unknown whether hysteresis occurs between the processes of eutrophication and oligotrophication.Unfavorable conditions caused by wind might be the main reason due to the absence of submersed macrophytes in Taihu Lake.These results demonstrate that stricter nutrient control is needed to maintain a healthy state or to recover from a decayed state for large lakes.展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant Number:42007407,42022059)the Sino-German mobility program(M-0393)+1 种基金the Key Research Program of the Institute of Geology and Geophysics(CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team(JCTD-2021-05).
文摘Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.
基金supported the National Natural Science Foundation of China (42022059,41888101)the Strategic Priority Research Program of the Chinese Academy of Sciences,China (Grant No.XDB26020000)+1 种基金the Key Research Program of the Institute of Geology and Geophysics (CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team (JCTD-2021-05).
文摘Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.
基金supported by the NationalNatural Science Foundation of China(Grant No.61867004)the Youth Fund of the National Natural Science Foundation of China(Grant No.41801288).
文摘The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.
基金supported by the National Key Research and Development Program of China(2016YFD0600201)the National Nonprofit Institute Research Grant of CAF(CAFYBB2017ZB003)+1 种基金the National Natural Science Foundation of China(3187071631670720)。
文摘Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002200,52102106,52202262,22379081,and 22379080Major Basic Research Program of the Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09+1 种基金the Natural Science Foundation of Shandong Province under Grant No.ZR2020QE063,ZR202108180009,ZR2023QE059the Postdoctoral Program in Qingdao under No.QDBSH20220202019。
文摘Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs.Herein,multielectron reaction occurred in VS_(4)by simple W doping strategy.W doping induces valence of partial V as V^(2+)and V^(3+)in VS_(4)structure,and then stimulates electrochemical reaction involving multi-electrons in 0.5%W-V-S.The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process.The fabricated 0.5%W-V-S delivers higher specific capacity(149.3 m A h g^(-1)at 50 m A g^(-1),which is 1.6 times higher than that of VS_(4)),superior rate capability(76 mA h g^(-1)at 1000 mA g^(-1)),and stable cycling performance(1500cycles with capacity retention ratio of 93.8%).Besides that,pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique(GITT)further confirms the enhanced Mg^(2+)storage kinetics during such multi-electron involved electrochemical reaction process.Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices.
基金The National Natural Science Foundation of China under contract No.42276047the Guangdong Basic and Applied Basic Research Foundation under contract Nos 2023A1515110473 and 2021A1515110172+1 种基金the Program for Scientific Research Start-up Funds of Guangdong Ocean University under contract No.R17058the National College Student Innovation and Entrepreneurship Training Program Project under contract No.202310566007。
文摘Zhanjiang Bay is a major aquaculture area in China with many types of mariculture products(such as oysters,fish,and shrimp).The culture area and shrimp output in Zhanjiang Bay are ranked first in China.We investigated the total organic carbon(TOC),total nitrogen(TN),TOC/TN ratio,and stable isotopes(δ^(13)C and δ^(15)N) of the fish and shrimp feed,fish and shrimp feces,and sedimentary organic matter(SOM) in and around different aquaculture areas of northeastern Zhanjiang B ay to study the impact of aquaculture activities on SOM.The average TOC contents of fish and shrimp feed were 39.20%±0.91% and 39.29%±0.21%,respectively.The average TOC content in the surface sediments of the oyster culture area,the mixed(fish and shrimp) culture area,and the cage fish farm area were 0.66%,0.88%±0.10%,and 0.58%±0.19%,respectively,which may indicate that mixed culture had a greater impact on SOM.The relatively high TOC and TN contents and relatively low TOC/TN ratios,and δ^(15)N values in the upper layer of the core sediment in the mixed culture area could also support the significant influence of mixed culture.The average δ^(13)C and δ^(15)N values of fish and shrimp feed were -20.6‰±2.2‰ and 1.8‰±1.2‰,respectively,which were different from the isotopic values of SOM in the study area.δ^(13)C and δ^(15)N values for SOM in different aquaculture areas were different from those of nearby reference stations,probably reflecting the influence of aquaculture.The δ^(13)C and δ^(15)N values in the oyster culture area(-25.9‰ and6.0‰,respectively) seemed to have reduced δ^(13)C and enriched δ^(15)N relative to those of the reference station(-24.6‰ and 5.8‰,respectively).This may reflect the influence of organic matter on oyster culture.The δ^(15)N value of the station in the mixed culture area(7.1‰±0.4‰) seemed to be relatively enriched in δ^(15)N relative to that of the reference station(6.6‰).Sedimentation and the subsequent degradation of organic matter from mixed cultures may have contributed to this phenomenon.The surface sediment at the cage fish farm area seemed to be affected by fish feces and primary production based on the indication of δ^(13)C and δ^(15)N values.The sediment core at the mixed culture region(NS6) had lower TOC/TN ratios and more positive δ^(13)C and δ^(15)N values than the sediment core at the oyster culture area,suggesting a higher proportionate contribution of marine organic matter in the mixed culture area.In summary,oyster culture,mixed culture,and cage fish culture in northeastern Zhanjiang Bay had a certain degree of impact on SOM,and mixed culture had more significant influences on SOM based on the high TOC contents and the significant vertical variations of TOC/TN ratio and δ^(15)N value in the sediment of this area.This study provides new insights into the impact of aquaculture activities on SOM content.
基金financially supported by the Natural Science Foundation of Henan Province Youth Fund of China(No.242300421466)the Key Scientific Research Project Plan in Universities of Henan Province,China(No.23A430037)+1 种基金the Research Project of Xuchang University,China(No.2024ZD004)the College Students’Innovation and Entrepreneurship Training Program of China(No.202410480008).
文摘Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.
基金funded by the National Natural Science Foundation of China(Grant No.42071047 and 41771035)the Basic Research Innovation Group Project of Gansu Province(Grant No.22JR5RA129).
文摘ZiZiphus jujuba,which is native to China,has become one of the main crops widely planted in the western Loess Plateau because of its drought and flood-tolerance,adaptability,and higher nutritional value of the fruit.The irrigation water infiltration in Z.jujuba gardens is complex,and understanding its mechanisms is essential for efficient water use and sustainable agriculture.This knowledge helps ensure the long-term success of jujuba cultivation.This paper describes a field experiment that investigates the infiltration process of irrigation water from Z.jujuba garden and quantifies the contribution of irrigation water to soil water at different depths using the MixSIAR model.According to the FC(Field water holding Capacity)of Z.jujuba,irrigation experiments with three volumes of 80%FC,60%FC,and 40%FC are set up in this study.The study finds that water retention is better in Z.jujuba garden soils with a higher proportion of coarse gravel in the soil particle composition.Soil water content exhibits a gradient change after irrigation,with deeper wetting front transport depth observed with increased irrigation water.Additionally,there is correlation between soil temperature and soil water content.The soil water in Z.jujuba garden generally exhibits a preferential flow signal in the 0-40 cm range.Below 40 cm,a piston flow pattern dominates.The rate of soil water infiltration increases with the amount of irrigation water.In the 0-40 cm range of the soil vertical profile,irrigation water was the main contributor to soil water.Z.jujuba demonstrated flexibility in water uptake,primarily absorbing soil water at depths of 0-40 cm.For optimal growth of Z.jujuba at this stage,40%FC irrigation is recommended.The results are expected to be valuable future irrigation practices and land use planning for Z.jujuba garden in arid zones,supporting sustainable agricultural development and water management.
基金The National Key Research and Development Program of China under contract No.2022YFE0136500the National Nature Science Foundation of China under contract Nos 41890801 and 42076227the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University under contract No.21TQ1400201.
文摘The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.
基金supported by the National Natural Science Foundation of China(Grant Nos.41761047,41861040 and 41861034).
文摘Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July.
基金Under the auspices of the Joint Funds of the National Natural Science Foundation of China(No.U22A20592)the National Key Research and Development Program of China(No.2020YFA0607702)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019QZKK0405)Chinese Academy of Sciences Young Crossover Team Project(No.JCTD-2022-18)Excellent doctoral program in Gansu Province(No.22JR5RA052)。
文摘Consideration of stable isotopes in precipitation is valuable for investigating hydrological processes.Therefore,correcting the measured isotopic composition of precipitation under below-cloud evaporation is necessary.An accurate description of the underlying processes affecting stable isotopic composition of precipitation could help improve our understanding of the water cycle.The transitivity between monsoonal and arid climates was reflected by the evaporation rate of falling raindrops in precipitation in the Qilian Mountains,a typical transition zone between Tibetan Plateau and arid region of China.Considering 1310 precipitation event-scale samples,based on stable isotope analysis method,the mean below-cloud evaporation rate(f)in the study area was measured as 12.00%during the summer half-year(May-October).The evaporation rate on the northern slopes(12.70%)of the Qilian Mountains in China was significantly higher than that on the southern slopes(9.98%).The transition between monsoonal and arid climates was reflected in the evaporation rate of falling raindrops during precipitation in the Qilian Mountains of China.Below-cloud evaporation contributed to a noticeable enrichment of stable isotopes in the precipitation in the study area.The monthly precipitationδ^(18)O enrichment rate in the Qilian Mountains of China from May to October was 29.18%,23.35%,25.60%,22.99%,31.64%,and 14.72%,respectively.For every 1.00%increase in the evaporation rate of raindrops in Qilian Mountains of China,the changes in the concentration of oxygen isotopes from the bottom of the clouds to the ground increased by 0.92‰;however,with an evaporation rate of<5.00%,for every 1.00%increase in the evaporation rate of raindrops the changes in the concentration of oxygen isotopes from the bottom of the clouds to the ground increased by 1.00‰could also be observed.Furthermore,altitude was an important factor affecting below-cloud evaporation in the study area.
文摘A mass flow matching model(MFMM)was established for studying the stable status of solution electrospinning.The study of the solution droplet status at the needle tip focused on various combinations of applied voltages and injection rates to figure out their influence on steadily fabricating polyvinyl alcohol(PVA)nanofibers prepared from PVA spinning solutions with two different mass fractions(10%and 16%).The results revealed that during the stable electrospinning,the influence resulted from the change of the injection rate approximately canceled out the impact brought by adjusting the applied voltage,leading to almost the same morphology as that of the PVA nanofibers.And the mass fraction of PVA in the spinning solution dominated the structure and the diameter distribution of the electrospun nanofibers.Under stable electrospinning conditions,the composite membrane was produced by depositing PVA nanofibers on the polyethylene terephthalate(PET)nonwoven substrate for an air filtration test.Furthermore,the prepared composite membrane exhibited a high air filtration efficiency(99.97%)and a low pressure drop(120 Pa)for 300-500 nm neutralized polystyrene latex(PSL)aerosol particles,demonstrating its potential as an alternative for a variety of commercial applications in air filtration.
文摘The thermal diffusion column represents one method of separating stable isotopes.This method is advantageous for smallscale operations because of the simplicity of the apparatus and small inventory,especially in gas-phase operations.Consequently,it has attracted attention for its applicability in tritium and noble gas separation systems.In this study,the R cascade was used to design and determine the number of columns.A square cascade was adopted for the final design because of its flexibility,and calculations were performed to separate 20Ne and 22Ne isotopes.All the R cascades that enriched the Ne isotopes by more than 99%were investigated,the number of columns was determined,and the square cascade parameters were optimized using the specified columns.Additionally,a calculation code“RSQ_CASCADE”was developed.A unit separation factor of three was considered,and the number of studied stages ranged from 10 to 20.The results showed that the column separation power,relative total flow rate,and required number of columns were linearly related to the number of stages.The separation power and relative total flow decreased and the number of columns increased as the stage number increased.Therefore,a cascade of 85 columns is recommended to separate the stable Ne isotopes.These calculations yielded a 17-stage square cascade with five columns in each stage.By changing the stage cut,feed point,and cascade feed flow rate,the best parameters for the square cascade were determined according to the cascade and column separation powers.As the column separation power had a maximum value in cascade feed 50,it was selected for separating Ne isotopes.
基金supported by the National Natural Science Foundation of China (Grant No. 42105093 and 41975018)the China Postdoctoral Science Foundation (Grant No. 2020M670420)the Special Research Assistant Project。
文摘Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.
基金Supported by the National Key Research and Development Program of China(No.2021YFC3200103)the Major Science and Technology Program for Water Pollution Control and Treatment of China(No.2017ZX07302-002)+2 种基金the State Key Laboratory of Freshwater Ecology and Biotechnology(No.2019FBZ01)the Wuhan Science and Technology Plan Project(No.2020020602012152),the Research Project of Wuhan Municipal Construction Group Co.,Ltd.(No.wszky202014)Haijun WANG was supported by the Youth Innovation Association of Chinese Academy of Sciences as an excellent member(No.Y201859)。
文摘Regime shifts from submersed macrophyte dominance to phytoplankton dominance have been widely reported in small-to medium-sized shallow lakes.However,alternative stable states in large shallow lakes(surface area>500 km^(2))remain unconfirmed.To understand the alternative stable states and the main influencing factors of submersed macrophytes in large lakes,the ecosystem states from monitoring data from 1959 to 2019 in large shallow Taihu Lake(2338 km^(2)in average depth of 2.12 m)in China were examined.Changes in submersed macrophyte coverage(C_(Mac))and phytoplankton chlorophyll a(Chl a)in the time series and their relationships with environmental factors were analyzed.During the field investigation from August 2018 to May 2019,nutrients and Chl a showed obvious heterogeneity across the lake,being generally higher in the western and northern areas and lower in the southeast area,while C_(Mac)was only observed in the eastern areas,e.g.,East Taihu Lake,Xukou Bay,and Gonghu Bay.During the long-term monitoring from 1959 to 2019 in the Central Region,Meiliang Bay,and East Taihu Lake,Chl a increased significantly in the time series.C_(Mac)varied slightly among different subareas,always at low levels(<10%)in the Central Region and Meiliang Bay but at relatively high levels in East Taihu Lake(10%–90%).Frequency distributions of response variables had no multimodality except for C_(Mac)in East Taihu Lake,with two peaks between 15%and 20%and between 55%and 60%.A dual relationship was found between Chl a and total phosphorus(TP)in the areas with and without macrophytes,while C_(Mac)showed no relationship with TP,and submersed macrophytes did not flourish in the Central Region and Meiliang Bay even when TP was at very low levels(≈10 mg/m3).Taihu Lake had similar algal turbidity(TurbAlg)as small-to mediumsized lakes but generally presented with higher values of nonalgal turbidity(TurbNonAlg),as did their contribution to total turbidity as a percentage.This study suggested that large shallow Taihu Lake may have no alternative stable states,but more evidence is needed for East Taihu Lake,which was dominated by macrophytes,as it remains unknown whether hysteresis occurs between the processes of eutrophication and oligotrophication.Unfavorable conditions caused by wind might be the main reason due to the absence of submersed macrophytes in Taihu Lake.These results demonstrate that stricter nutrient control is needed to maintain a healthy state or to recover from a decayed state for large lakes.