Split sleeve cold expansion(SSCX)can efiectively enhance fatigue life of holes by improving the field of residual stress.Numerical simulations were conducted to investigate the parameter influence mechanism and obtain...Split sleeve cold expansion(SSCX)can efiectively enhance fatigue life of holes by improving the field of residual stress.Numerical simulations were conducted to investigate the parameter influence mechanism and obtain higher compressive residual stress(CRS).Expansion method,degree of cold expansion(DCE),friction coefficient between laminations and depth-diameter ratio were analyzed.For Ti-Al stacked joint holes,two expansion methods are proposed,namely aluminum alloy first followed titanium alloy(Al first)and titanium alloy first followed aluminum alloy(Ti first).The results show that expansion method and DCE have significant efiects on the field of circumferential residual stress,and the friction has a negligible influence.A higher value of CRS and a wider layer of plastic deformation are induced with Ti first.Optimal DCE of TiAl stacked structure is 5.2%-5.6%.As the depth-diameter ratio is in the range of 0.5-1.25,a positive linear correlation between the maximum compressive residual stress(CRS_(max))and depth-diameter ratio is shown.展开更多
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th...Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.展开更多
The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO ...The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.展开更多
14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu ...14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu and Zn and thus they were quaternary phases. Sharp diffraction pattern of the 24R structure was obtained and the angle between and g10024R was measured to be 5.03°. During high resolution TEM observations, lattice fringes with two characteristic spacings were observed within the 24R structure. Based on the experimental results, 6H, 7H and three 8H are suggested as the building blocks of 18R, 14H and 24R structures, respectively. The 24R unit cell can be interpreted as the stacking of 8H building blocks in the same shear direction with a shear angle of about 5.03°. The imperfect 24R structures are in order or disorder arrangements of principal 8H and minor 6H blocks. This double-block structure model is also applicable to other reported defects in LPSO structures.展开更多
The utilization of neutrons markedly affects the medical isotope yield of a subcritical system driven by an external D-T neutron source.The general methods to improve the utilization of neutrons include moderating mul...The utilization of neutrons markedly affects the medical isotope yield of a subcritical system driven by an external D-T neutron source.The general methods to improve the utilization of neutrons include moderating multiplying,and reflecting neutrons,which ignores the use of neutrons that backscatter to the source direction.In this study,a stacked structure was formed by assembling the multiplier and the low-enriched uranium solution to enable the full use of neutrons that backscatter to the source direction and further improve the utilization of neutrons.A model based on SuperMC was used to evaluate the neutronics and safety behavior of the subcritical system,such as the neutron effective multiplication factor,neutron energy spectrum,medical isotope yield,and heat deposition.Based on the calculation results,when the intensity of the neutron source was 59×10^(13)n/s,the optimized design with a stacked structure could increase the yield of ^(99)Mo to182 Ci/day,which is approximately 16% higher than that obtained with a single-layer structure.The inlet H_(2)O coolant velocity of 1.0 m/s and initial temperature of 20℃ were also found to be sufficient to prevent boiling of the fuel solution.展开更多
The electricity-conducting rubber force sensor is an attractive candidate as a low-cost material for tactile sensors. This article shows the evidence that the output reproducibility is largely improved when two identi...The electricity-conducting rubber force sensor is an attractive candidate as a low-cost material for tactile sensors. This article shows the evidence that the output reproducibility is largely improved when two identical sheets of the sensors are stacked. The stacked structure may reduce accidental error that is a fatal obstacle in an accurate control system.展开更多
Severe mechanical fractu re and unstable interphase,associated with the large volumetric expansion/contraction,significantly hinder the application of high-capacity SiO_(x)materials in lithium-ion batteries.Herein,we ...Severe mechanical fractu re and unstable interphase,associated with the large volumetric expansion/contraction,significantly hinder the application of high-capacity SiO_(x)materials in lithium-ion batteries.Herein,we report the design and facile synthesis of a layer stacked SiO_(x)microparticle(LS-SiO_(x))material,which presents a stacking structure of SiO_(x)layers with abundant disconnected interstices.This LS-SiO_(x)microparticle can effectively accommodate the volume expansion,while ensuring negligible particle expansion.More importantly,the interstices within SiO_(x)microparticle are disconnected from each other,which efficiently prevent the electrolyte from infiltration into the interior,achieving stable electrode/-electrolyte interface.Accordingly,the LS-SiO_(x)material without any coating delivers ultrahigh average Coulombic efficiency,outstanding cycling stability,and full-cell applicability.Only 6 cycles can attain>99.92%Coulombic efficiency and the capacity retention at 0.05 A g^(-1)for 100 cycles exceeds99%.After 800 cycles at 1 A g^(-1),the thickness swelling of LS-SiO_(x)electrode is as low as 0.87%.Moreover,the full cell with pure LS-SiO_(x)anode exhibits capacity retention of 91.2%after 300 cycles at 0.2 C.This work provides a novel concept and effective approach to rationally design silicon-based and other electrode materials with huge volume variation for electrochemical energy storage applications.展开更多
Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stac...Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stacked deposition strategy to in situ activation and reconstruction of NiO/NiOOH on Ni matrix,following with the migration of Fe ions to NiOOH.The Fe sites on the Ni/NiO/NiOOH facilitate the formation of the stable*OH oxygenated intermediates,and the Ni matrix in the catalyst provides the catalyst excellent stability.The oxygen evolution reaction(OER)performance of the stacked NiFe-5 with compressive strain displays the strengthened binding to oxygenated intermediates and superior OER activity,the ultralow overpotentials of 162 versus reversible hydrogen electrode at 10 mA cm^(-2).On the other hand,the Ni-5 without the incorporation of Fe has shown an outstanding hydrogen evolution reaction(HER)activity,affording an overpotential of 47 mV at 10 mA cm^(-2).The NiFe-5‖Ni-5 enables the overall water splitting at a voltage of 1.508 V to achieve 20 mA cm^(-2) with remarkable durability.The stacked deposition strategy improves binding strength of Ni-based catalysts to oxygenated intermediates via generating compressive strain,causing high catalytic activities on OER and HER.展开更多
A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribologica...A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30-300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed ofα-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, andβ-[(Mg,Zn)3Gd] phase. However, most of theβ-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy.展开更多
The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5,...The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5, there are a few lamellar phases that grow parallel with each other from the grain boundaries to the grain interior. With Zn content increasing, the Mg24(Er, Y, Zn)5 phase decreases, but the Mg12Zn(Y, Er) phase and lamellar phases continuously increase. When Zn content reaches 4% (normal mass fraction), the Mg12Zn(Y, Er) phase mainly exists as large bulks, and some a-Mg grains are thoroughly penetrated by the lamellar phases. Moreover, the crystallography structures of the Mgl2Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases are confirmed as 18R-type long-period stacking ordered structure and body-centred cubic structure, respectively.展开更多
In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission ele...In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.展开更多
The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and hig...The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Fine plate-like 14H-LPSO structures precipitate after heat treatment at 500℃for 2 h,andβ-type phases precipitate after the alloy is aged at 240℃.The long-period atomic stacking sequence of 14H-LPSO structures along the[0001]αdirection is ABABCACACACBABA.After being aged at 240℃for 2 h,theβ-type phases are the ordered solution clusters,zig-zag GP zones,and a small number ofβ′phases.The peak hardness is obtained at 240℃for 18 h with a Brinell hardness of 112,theβ-type phases areβ’phases and local RE-rich structures.After being aged at 240℃for 100 h,theβ-type phases areβ’,β1 andβ’F phases.β′phases nucleate from the zig-zag GP zones directly withoutβ″phases,and then transform intoβ1 phase byβ’→β’F→β1 transformations.The Zn not only can form LPSO structure,but also is the constituent element ofβ1 phases.LPSO structures have a certain hindrance to the coarsening ofβ’andβ1 along<0001>α.展开更多
Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-fiel...Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm).展开更多
The reaction of 6,7-dicyanodipyridoquinoxaline (DICNQ) with AgNO3 in a 1:1 molar ratio by solution method gave a new complex [Ag(DICNQ)2]NO3 1. Single-crystal X-ray diffraction analysis reveals that the complex c...The reaction of 6,7-dicyanodipyridoquinoxaline (DICNQ) with AgNO3 in a 1:1 molar ratio by solution method gave a new complex [Ag(DICNQ)2]NO3 1. Single-crystal X-ray diffraction analysis reveals that the complex crystallizes in the space group Ibca of orthorhombic system with eight formula units in a cell. Crystal data for 1: a = 15.7055(17), b = 18.411(2), c = 20.680(2)A, V = 5979.7(11)A3, Z = 8, C32Hl2AgN13O3, Mr = 734.42, Dc = 1.632 g/cm3, μ= 0.734 mm-1, F(000) = 2928, S = 1.023 and T= 293(2) K. The final R = 0.0659 and wR = 0.1927 for 2118 observed reflections with I 〉 2σ(I), and R = 0.0801 and wR = 0.2196 for all data. The complex builds up a packing structure by π-π stacking interactions and shows a luminescent feature.展开更多
Silicones can be cross-linked to materials with a wide variety of properties.In this work,the ringed oligomers of [SiO(OH)_2]nas well as the stacked structures of trimer and the linear strands of the dimer and trimer ...Silicones can be cross-linked to materials with a wide variety of properties.In this work,the ringed oligomers of [SiO(OH)_2]nas well as the stacked structures of trimer and the linear strands of the dimer and trimer were investigated systematically at B3 LYP/6-311 + + G(d,p) level combined with the conductor-like screening model(CPCM).This theoretical model reveals that,(1) SiO(OH)_2 will condense to stable ringed structures with SiO tetrahedrons;(2) in the ringed octamer [SiO(OH)_2]8,the macrocycle begins to pucker drastically;(3) from the linear strands of SiO rings it can be seen that the longer the chain is,the greater the energies decrease;(4) in [SiO(OH)_2]n(n ≥5) and in the strands of ringed oligomers,the highest occupied molecular orbitals(HOMOs) are primarily the n orbitals of the lone-pair electrons of oxygen atoms,so there are no delocalized π bonds.展开更多
The primary energy demand increases, but a large amount of waste heat resources w</span><span style="font-family:Verdana;">ere </span><span style="font-family:Verdana;">...The primary energy demand increases, but a large amount of waste heat resources w</span><span style="font-family:Verdana;">ere </span><span style="font-family:Verdana;">not effectively used. To explore the influence of particle stacking structure on waste heat recovery process, CFD method was used to simulate. An unsteady heat transfer model of two particles was established, effect of particle stacking angle on heat transfer characteristics of the particles close to the wall under different initial temperature conditions was studied. Results show that: higher initial temperature, resulting in increased heat transfer time, the larger particle stacking angle causes the shortening of heat transfer time. When initial temperature is 1073</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">K, the average wall heat flux shows a trend of rapid decline first and then a slow one. At the same moment, the larger stacking angle causes smaller particle average temperature. The change of particle stacking angle shows a greater impact on the temperature of the particles close to adiabatic wall. The increase in the stacking angle resulting in better heat transfer characteristics between particles.展开更多
Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment ...Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.展开更多
4-(4,6-Dimethoxyl-pyrimidin-2-yl)-3-thiourea carboxylic acid ethyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine, potassium thiocyanate and methyl chloroformate in ethyl acetate. Single ...4-(4,6-Dimethoxyl-pyrimidin-2-yl)-3-thiourea carboxylic acid ethyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine, potassium thiocyanate and methyl chloroformate in ethyl acetate. Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamide at room temperature. The crystal structure was determined by X-ray diffraction analysis. Crystallographic data: C10H14N4O4S, M, = 286.31, monoclinic, space group C2/c with a = 2.5309(3), b = 0.67682(6), c = 1.74237(19) nm, β = 114.744(3)°, V= 2.7106(5) nm3, Dc = 1.403 g/cm3, p = 0.225 mm-1, F(000) = 1200, Z= 8, R= 0.0514 and wR= 0.1529.展开更多
One new polymer, [Na(NPHSNPAB)(CH3OH)]n, where NPHSNPAB stands for Nphenyl-2-[2-hydroxy-3-sulfo-5-nitrophenylhydrazone]butadione-1,3, has been synthesized and characterized by ^1H NMR and FTIR spectroscopy and sin...One new polymer, [Na(NPHSNPAB)(CH3OH)]n, where NPHSNPAB stands for Nphenyl-2-[2-hydroxy-3-sulfo-5-nitrophenylhydrazone]butadione-1,3, has been synthesized and characterized by ^1H NMR and FTIR spectroscopy and single-crystal X-ray diffraction. For this complex: C(17)H(17)N4NaO9S, Mr = 476.39, triclinic system, space group P1, a = 8.8741(18), b = 10.942(2), c = 12.039(2) A, α = 65.74(3), β = 77.49(3), γ = 84.30(3)o, V = 1040.3(4) A3, Z = 2, Dc = 1.521 g/cm^3, λ = 0.71073 A, F(000) = 492, S = 1.106, R = 0.0614 and w R = 0.1423 for 2945 observed reflections with I 〉 2(I). X-ray structural analysis revealed that the structure of NPHSNPAB framework was almost planar by C–H···O, N–H···O, O–H···O, and O–H···S hydrogen bonds. Moreover, sodium(I) center was bound by six O and one N atoms, forming the coordination polymer. The molecular packing diagram showed complicated hydrogen bonds and π···π stacking interaction in the polymer. The average bond distance of the two dicyclic units(3.768 A) indicated strong π···π stacking interaction. The complex displays greenyellow emission at room temperature.展开更多
The key to solve increasingly severe electromagnetic(EM)pollution is to explore sustainable,easily prepared,and cost-effective EM wave absorption materials with exceptional absorption capability.Herein,instead of anch...The key to solve increasingly severe electromagnetic(EM)pollution is to explore sustainable,easily prepared,and cost-effective EM wave absorption materials with exceptional absorption capability.Herein,instead of anchoring on carbon materials in single layer,MoS_(2) flower-like microspheres were stacked on the surface of pomelo peels-derived porous carbon nanosheets(C)to fabricate MoS_(2)@C nanocomposites by a facile solvothermal process.EM wave absorption performances of MoS_(2)@C nanocomposites in X-band were systematically investigated,indicating the minimum reflection loss(RLmin)of-62.3 dB(thickness of 2.88 mm)and effective absorption bandwidth(EAB)almost covering the whole X-band(thickness of 2.63 mm)with the filler loading of only 20 wt.%.Superior EM wave absorption performances of MoS_(2)@C nanocomposites could be attributed to the excellent impedance matching characteristic and dielectric loss capacity(conduction loss and polarization loss).This study revealed that the as-prepared MoS_(2)@C nanocomposites would be a novel prospective candidate for the sustainable EM absorbents with superior EM wave absorption performances.展开更多
基金Funded by National Natural Science Foundation of China(No.51175257)。
文摘Split sleeve cold expansion(SSCX)can efiectively enhance fatigue life of holes by improving the field of residual stress.Numerical simulations were conducted to investigate the parameter influence mechanism and obtain higher compressive residual stress(CRS).Expansion method,degree of cold expansion(DCE),friction coefficient between laminations and depth-diameter ratio were analyzed.For Ti-Al stacked joint holes,two expansion methods are proposed,namely aluminum alloy first followed titanium alloy(Al first)and titanium alloy first followed aluminum alloy(Ti first).The results show that expansion method and DCE have significant efiects on the field of circumferential residual stress,and the friction has a negligible influence.A higher value of CRS and a wider layer of plastic deformation are induced with Ti first.Optimal DCE of TiAl stacked structure is 5.2%-5.6%.As the depth-diameter ratio is in the range of 0.5-1.25,a positive linear correlation between the maximum compressive residual stress(CRS_(max))and depth-diameter ratio is shown.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.12072212 and 11832007)the National Key Research and Development Program of China(No.2018YFE0307104)the Applied Basic Research Programs of Sichuan Province(No.2021YJ0071).We also highly appreciate the help of Dr.Yan Li from the Department of Mechanics,Sichuan University.
文摘Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.
基金Project (BK2010392) supported by the Natural Science Foundation of Jiangsu Province of ChinaProject (3212000502) supported by the Innovation Foundation of Southeast University,China
文摘The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.
基金Project (2009CB623704) supported by the National Basic Research Program of ChinaProject (50971076) supported by the National Natural Science Foundation of China
文摘14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu and Zn and thus they were quaternary phases. Sharp diffraction pattern of the 24R structure was obtained and the angle between and g10024R was measured to be 5.03°. During high resolution TEM observations, lattice fringes with two characteristic spacings were observed within the 24R structure. Based on the experimental results, 6H, 7H and three 8H are suggested as the building blocks of 18R, 14H and 24R structures, respectively. The 24R unit cell can be interpreted as the stacking of 8H building blocks in the same shear direction with a shear angle of about 5.03°. The imperfect 24R structures are in order or disorder arrangements of principal 8H and minor 6H blocks. This double-block structure model is also applicable to other reported defects in LPSO structures.
基金supported by the Natural Science Foundation of Anhui Province(No.1808085MA10)Anhui Provincial Key R&D Program(No.202104g0102007)the National Natural Science Foundation of China(No.21805283)。
文摘The utilization of neutrons markedly affects the medical isotope yield of a subcritical system driven by an external D-T neutron source.The general methods to improve the utilization of neutrons include moderating multiplying,and reflecting neutrons,which ignores the use of neutrons that backscatter to the source direction.In this study,a stacked structure was formed by assembling the multiplier and the low-enriched uranium solution to enable the full use of neutrons that backscatter to the source direction and further improve the utilization of neutrons.A model based on SuperMC was used to evaluate the neutronics and safety behavior of the subcritical system,such as the neutron effective multiplication factor,neutron energy spectrum,medical isotope yield,and heat deposition.Based on the calculation results,when the intensity of the neutron source was 59×10^(13)n/s,the optimized design with a stacked structure could increase the yield of ^(99)Mo to182 Ci/day,which is approximately 16% higher than that obtained with a single-layer structure.The inlet H_(2)O coolant velocity of 1.0 m/s and initial temperature of 20℃ were also found to be sufficient to prevent boiling of the fuel solution.
文摘The electricity-conducting rubber force sensor is an attractive candidate as a low-cost material for tactile sensors. This article shows the evidence that the output reproducibility is largely improved when two identical sheets of the sensors are stacked. The stacked structure may reduce accidental error that is a fatal obstacle in an accurate control system.
基金the support of the National Natural Science Foundation of China(51634003)。
文摘Severe mechanical fractu re and unstable interphase,associated with the large volumetric expansion/contraction,significantly hinder the application of high-capacity SiO_(x)materials in lithium-ion batteries.Herein,we report the design and facile synthesis of a layer stacked SiO_(x)microparticle(LS-SiO_(x))material,which presents a stacking structure of SiO_(x)layers with abundant disconnected interstices.This LS-SiO_(x)microparticle can effectively accommodate the volume expansion,while ensuring negligible particle expansion.More importantly,the interstices within SiO_(x)microparticle are disconnected from each other,which efficiently prevent the electrolyte from infiltration into the interior,achieving stable electrode/-electrolyte interface.Accordingly,the LS-SiO_(x)material without any coating delivers ultrahigh average Coulombic efficiency,outstanding cycling stability,and full-cell applicability.Only 6 cycles can attain>99.92%Coulombic efficiency and the capacity retention at 0.05 A g^(-1)for 100 cycles exceeds99%.After 800 cycles at 1 A g^(-1),the thickness swelling of LS-SiO_(x)electrode is as low as 0.87%.Moreover,the full cell with pure LS-SiO_(x)anode exhibits capacity retention of 91.2%after 300 cycles at 0.2 C.This work provides a novel concept and effective approach to rationally design silicon-based and other electrode materials with huge volume variation for electrochemical energy storage applications.
基金supported by the National Natural Science Foundations of China(21965024,22269016,51721002)the Inner Mongolia funding(2020JQ01,21300-5223601)the funding of Inner Mongolia University(10000-21311201/137,213005223601/003,21300-5223707)。
文摘Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stacked deposition strategy to in situ activation and reconstruction of NiO/NiOOH on Ni matrix,following with the migration of Fe ions to NiOOH.The Fe sites on the Ni/NiO/NiOOH facilitate the formation of the stable*OH oxygenated intermediates,and the Ni matrix in the catalyst provides the catalyst excellent stability.The oxygen evolution reaction(OER)performance of the stacked NiFe-5 with compressive strain displays the strengthened binding to oxygenated intermediates and superior OER activity,the ultralow overpotentials of 162 versus reversible hydrogen electrode at 10 mA cm^(-2).On the other hand,the Ni-5 without the incorporation of Fe has shown an outstanding hydrogen evolution reaction(HER)activity,affording an overpotential of 47 mV at 10 mA cm^(-2).The NiFe-5‖Ni-5 enables the overall water splitting at a voltage of 1.508 V to achieve 20 mA cm^(-2) with remarkable durability.The stacked deposition strategy improves binding strength of Ni-based catalysts to oxygenated intermediates via generating compressive strain,causing high catalytic activities on OER and HER.
基金Projects(51304135,50971089)supported by the National Natural Science Foundation of ChinaProject(A1420110045)supported by National Defense Basic Research Plan,China+1 种基金Project(11QH1401200)supported by the Shanghai Phospherus Program,ChinaProject(NCET-11-0329)supported by the New Century Excellent Talents in University of Ministry of Education of China
文摘A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30-300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed ofα-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, andβ-[(Mg,Zn)3Gd] phase. However, most of theβ-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy.
基金Project(NCET-11-0554) supported by the Program for New Century Excellent Talents in University,ChinaProject(2011BAE22B04) supported by the National Key Technology R&D Program,ChinaProject(51271206) supported by the National Natural Science Foundation of China
文摘The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5, there are a few lamellar phases that grow parallel with each other from the grain boundaries to the grain interior. With Zn content increasing, the Mg24(Er, Y, Zn)5 phase decreases, but the Mg12Zn(Y, Er) phase and lamellar phases continuously increase. When Zn content reaches 4% (normal mass fraction), the Mg12Zn(Y, Er) phase mainly exists as large bulks, and some a-Mg grains are thoroughly penetrated by the lamellar phases. Moreover, the crystallography structures of the Mgl2Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases are confirmed as 18R-type long-period stacking ordered structure and body-centred cubic structure, respectively.
基金Project(2015TP1035)supported by the Science and Technology Planning Project of Hunan Province,ChinaProject(531107040183)supported by the Fundamental Research Funds for the Central Universities,China
文摘In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.
基金Projects(51871195,51501015)supported by the National Natural Science Foundation of ChinaProject(TC170A5SU-1)supported by Ministry of Industry and Information Technology of China。
文摘The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Fine plate-like 14H-LPSO structures precipitate after heat treatment at 500℃for 2 h,andβ-type phases precipitate after the alloy is aged at 240℃.The long-period atomic stacking sequence of 14H-LPSO structures along the[0001]αdirection is ABABCACACACBABA.After being aged at 240℃for 2 h,theβ-type phases are the ordered solution clusters,zig-zag GP zones,and a small number ofβ′phases.The peak hardness is obtained at 240℃for 18 h with a Brinell hardness of 112,theβ-type phases areβ’phases and local RE-rich structures.After being aged at 240℃for 100 h,theβ-type phases areβ’,β1 andβ’F phases.β′phases nucleate from the zig-zag GP zones directly withoutβ″phases,and then transform intoβ1 phase byβ’→β’F→β1 transformations.The Zn not only can form LPSO structure,but also is the constituent element ofβ1 phases.LPSO structures have a certain hindrance to the coarsening ofβ’andβ1 along<0001>α.
基金supported by the National Natural Science Foundation of China(Grant No.51801214 and 51871222)。
文摘Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm).
基金supported by NNSFC (20701037)a Key Project from the CAS (KJCX2-YW-H01)the NSF of Fujian Province (E0510029)
文摘The reaction of 6,7-dicyanodipyridoquinoxaline (DICNQ) with AgNO3 in a 1:1 molar ratio by solution method gave a new complex [Ag(DICNQ)2]NO3 1. Single-crystal X-ray diffraction analysis reveals that the complex crystallizes in the space group Ibca of orthorhombic system with eight formula units in a cell. Crystal data for 1: a = 15.7055(17), b = 18.411(2), c = 20.680(2)A, V = 5979.7(11)A3, Z = 8, C32Hl2AgN13O3, Mr = 734.42, Dc = 1.632 g/cm3, μ= 0.734 mm-1, F(000) = 2928, S = 1.023 and T= 293(2) K. The final R = 0.0659 and wR = 0.1927 for 2118 observed reflections with I 〉 2σ(I), and R = 0.0801 and wR = 0.2196 for all data. The complex builds up a packing structure by π-π stacking interactions and shows a luminescent feature.
基金National Natural Science Foundations of China(Nos.21502136 and 21571137)Natural Science Foundation of Shandong Province,China(No.ZR2012BL10)the University Science and Technology Project of Shandong Province,China(No.J13LD05)
文摘Silicones can be cross-linked to materials with a wide variety of properties.In this work,the ringed oligomers of [SiO(OH)_2]nas well as the stacked structures of trimer and the linear strands of the dimer and trimer were investigated systematically at B3 LYP/6-311 + + G(d,p) level combined with the conductor-like screening model(CPCM).This theoretical model reveals that,(1) SiO(OH)_2 will condense to stable ringed structures with SiO tetrahedrons;(2) in the ringed octamer [SiO(OH)_2]8,the macrocycle begins to pucker drastically;(3) from the linear strands of SiO rings it can be seen that the longer the chain is,the greater the energies decrease;(4) in [SiO(OH)_2]n(n ≥5) and in the strands of ringed oligomers,the highest occupied molecular orbitals(HOMOs) are primarily the n orbitals of the lone-pair electrons of oxygen atoms,so there are no delocalized π bonds.
文摘The primary energy demand increases, but a large amount of waste heat resources w</span><span style="font-family:Verdana;">ere </span><span style="font-family:Verdana;">not effectively used. To explore the influence of particle stacking structure on waste heat recovery process, CFD method was used to simulate. An unsteady heat transfer model of two particles was established, effect of particle stacking angle on heat transfer characteristics of the particles close to the wall under different initial temperature conditions was studied. Results show that: higher initial temperature, resulting in increased heat transfer time, the larger particle stacking angle causes the shortening of heat transfer time. When initial temperature is 1073</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">K, the average wall heat flux shows a trend of rapid decline first and then a slow one. At the same moment, the larger stacking angle causes smaller particle average temperature. The change of particle stacking angle shows a greater impact on the temperature of the particles close to adiabatic wall. The increase in the stacking angle resulting in better heat transfer characteristics between particles.
基金Project(2011D-5006-0105)supported by the Technology Innovation Foundation of CNPC,ChinaProject(SZD0414)supported by the Key Discipline of Mineral Prospecting and Exploration of Sichuan Province,China
文摘Based on a synthetic geological study of drilling, well logging and core observations, two main genetic types of Chang 9sand body in Odors Basin were recognized, which included two effects, that is, delta environment and tractive current effects that lead to the development of mouth bar, distal bar, sheet sand and other sand bodies of subaerial and subaqueous distributary channel,natural levee, flood fan and delta front, and shore-shallow lake environment and lake flow transformation effects that result in the development of sandy beach bar, sheet sand and other sand bodies. Chang 9 sand body mainly developed five basic vertical structures, namely box shape, campaniform, infundibuliform, finger and dentoid. The vertical stacking patterns of multilayer sand body was complex, and the common shapes included box shape + box shape, campaniform + campaniform, campaniform + box shape, infundibuliform + infundibuliform, campaniform + infundibuliform, box shape + campaniform, box shape + infundibuliform,and finger + finger. Based on the analysis on major dominating factors of vertical structure of sand body, sedimentary environment,sedimentary facies and rise, fall and cycle of base level are identified as the major geological factors that control the vertical structure of single sand body as well as vertical stacking patterns and distribution of multistory sand bodies.
基金supported by the National Natural Science Foundation of China (20571060)Natural Science Foundation of Shaanxi Province (2007B08)Education Committee of Shaanxi Province (05JK294)
文摘4-(4,6-Dimethoxyl-pyrimidin-2-yl)-3-thiourea carboxylic acid ethyl ester was synthesized by the reaction of 2-amino-4,6-dimethoxyl pyrimidine, potassium thiocyanate and methyl chloroformate in ethyl acetate. Single crystals suitable for X-ray measurement were obtained by recrystallization with the solvent of dimethyl formamide at room temperature. The crystal structure was determined by X-ray diffraction analysis. Crystallographic data: C10H14N4O4S, M, = 286.31, monoclinic, space group C2/c with a = 2.5309(3), b = 0.67682(6), c = 1.74237(19) nm, β = 114.744(3)°, V= 2.7106(5) nm3, Dc = 1.403 g/cm3, p = 0.225 mm-1, F(000) = 1200, Z= 8, R= 0.0514 and wR= 0.1529.
基金supported by the Soft Science project of Shanxi Province(No.2013041020-03)the National Natural Science Foundation of China(No.51174275)
文摘One new polymer, [Na(NPHSNPAB)(CH3OH)]n, where NPHSNPAB stands for Nphenyl-2-[2-hydroxy-3-sulfo-5-nitrophenylhydrazone]butadione-1,3, has been synthesized and characterized by ^1H NMR and FTIR spectroscopy and single-crystal X-ray diffraction. For this complex: C(17)H(17)N4NaO9S, Mr = 476.39, triclinic system, space group P1, a = 8.8741(18), b = 10.942(2), c = 12.039(2) A, α = 65.74(3), β = 77.49(3), γ = 84.30(3)o, V = 1040.3(4) A3, Z = 2, Dc = 1.521 g/cm^3, λ = 0.71073 A, F(000) = 492, S = 1.106, R = 0.0614 and w R = 0.1423 for 2945 observed reflections with I 〉 2(I). X-ray structural analysis revealed that the structure of NPHSNPAB framework was almost planar by C–H···O, N–H···O, O–H···O, and O–H···S hydrogen bonds. Moreover, sodium(I) center was bound by six O and one N atoms, forming the coordination polymer. The molecular packing diagram showed complicated hydrogen bonds and π···π stacking interaction in the polymer. The average bond distance of the two dicyclic units(3.768 A) indicated strong π···π stacking interaction. The complex displays greenyellow emission at room temperature.
基金supported by the PhD Start-up Fund of Science and Technology Department of Liaoning Province(No.2022-BS-306)the General Cultivation Scientific Research Project of Bohai University(No.0522xn058)the PhD Research Startup Foundation of Bohai University(No.0521bs021).
文摘The key to solve increasingly severe electromagnetic(EM)pollution is to explore sustainable,easily prepared,and cost-effective EM wave absorption materials with exceptional absorption capability.Herein,instead of anchoring on carbon materials in single layer,MoS_(2) flower-like microspheres were stacked on the surface of pomelo peels-derived porous carbon nanosheets(C)to fabricate MoS_(2)@C nanocomposites by a facile solvothermal process.EM wave absorption performances of MoS_(2)@C nanocomposites in X-band were systematically investigated,indicating the minimum reflection loss(RLmin)of-62.3 dB(thickness of 2.88 mm)and effective absorption bandwidth(EAB)almost covering the whole X-band(thickness of 2.63 mm)with the filler loading of only 20 wt.%.Superior EM wave absorption performances of MoS_(2)@C nanocomposites could be attributed to the excellent impedance matching characteristic and dielectric loss capacity(conduction loss and polarization loss).This study revealed that the as-prepared MoS_(2)@C nanocomposites would be a novel prospective candidate for the sustainable EM absorbents with superior EM wave absorption performances.