期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
Determination of stacking fault energies in a high-Nb TiAl alloy at 298 K and 1273 K 被引量:1
1
作者 SONG Xiping, CAO Lin, WANG Yanli, LIN Junpin, and CHEN Guoliang 《Rare Metals》 SCIE EI CAS CSCD 2004年第1期31-31,共1页
The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 K were determined. The principle for the determination of the stacking fault energies is based on the fact that the stacking fault energy and t... The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 K were determined. The principle for the determination of the stacking fault energies is based on the fact that the stacking fault energy and the elastic interaction energy acting on the dissociated partial dislocations are equal. After the compress deformations with the strain of 0.2% at 298 K and 1273 K, and water quench to maintain the dislocation structures deformed at 1273 K, the dissociation distances between two partial dislocations were determined by weak beam transmission electron microscopy (WBTEM) technique. Based on these dissociation distances and the corresponding calculation method, the stacking fault energies were determined to be 77-81 mJ/m2 at 298 K and to be 57-60mJ/m2 at 1273 K respectively. 展开更多
关键词 stacking fault energy TiAl alloy TEMPERATURE DISLOCATION
下载PDF
First-principles study of the effects of selected interstitial atoms on the generalized stacking fault energies, strength, and ductility of Ni 被引量:1
2
作者 李春霞 党随虎 +2 位作者 王丽萍 张彩丽 韩培德 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期454-458,共5页
We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for t... We analyze the influences of interstitial atoms on the generalized stacking fault energy (GSFE), strength, and ductility of Ni by first-principles calculations. Surface energies and GSFE curves are calculated for the (112) (111) and / 101) ( 1 1 1) systems. Because of the anisotropy of the single crystal, the addition of interstitials tends to promote the strength of Ni by slipping along the (10T) direction while facilitating plastic deformation by slipping along the (115) direction. There is a different impact on the mechanical behavior of Ni when the interstitials are located in the slip plane. The evaluation of the Rice criterion reveals that the addition of the interstitials H and O increases the brittleness in Ni and promotes the probability of cleavage fracture, while the addition of S and N tends to increase the ductility. Besides, P, H, and S have a negligible effect on the deformation tendency in Ni, while the tendency of partial dislocation is more prominent with the addition of N and O. The addition of interstitial atoms tends to increase the high-energy barrier γmax, thereby the second partial resulting from the dislocation tends to reside and move on to the next layer. 展开更多
关键词 first principles generalized stacking fault energy Nickel based alloys strength and ductility
下载PDF
Determination of stacking fault energies in a high-Nb TiAl alloy at 298 K and 1273 K
3
作者 XipingSong LinCao +2 位作者 YanliWang JunpinLin GuoliangChen 《Journal of University of Science and Technology Beijing》 CSCD 2004年第1期35-38,共4页
The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 Kwere determined. The principle for the determination of the stacking fault energies is based on thefact that the stacking fault energy and the... The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 Kwere determined. The principle for the determination of the stacking fault energies is based on thefact that the stacking fault energy and the elastic interaction energy acting on the dissociatedpartial dislocations are equal. After the compress deformations with the strain of 0.2% at 298 K and1273 K, and water quench to maintain the dislocation structures deformed at 1273 K, thedissociation distances between two partial dislocations were determined by weak beam transmissionelectron microscopy (WBTEM) technique. Based on these dissociation distances and the correspondingcalculation method, the stacking fault energies were determined to be 77-81 mJ/m^2 at 298 K and tobe 57-60mJ/m^2 at 1273 K respectively. 展开更多
关键词 stacking fault energy TiAl alloy TEMPERATURE DISLOCATION
下载PDF
Correlation of work function and stacking fault energy through Kelvin probe force microscopy and nanohardness in diluteα-magnesium
4
作者 Yigit Türe Ali Arslan Kaya +2 位作者 Hüseyin Aydin Jiang Peng Servet Turan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期237-250,共14页
Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work ... Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation. 展开更多
关键词 Mg alloys Dilute alloys Work function stacking fault energy Kelvin probe force microscopy Short range order Miedema NANOINDENTATION EUTECTICS
下载PDF
Effect of stacking fault energy on mechanical properties of ultrafine-grain Cu and Cu-Al alloy processed by cold-rolling 被引量:7
5
作者 伞星源 梁晓光 +2 位作者 程莲萍 沈黎 朱心昆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期819-824,共6页
Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurem... Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength. 展开更多
关键词 CU Cu alloys COLD-ROLLING tensile tests stacking fault energy
下载PDF
Stacking fault energy and electronic structure of molybdenum under solid solution softening/hardening 被引量:1
6
作者 LIU Pan LIU Liu-cheng GONG Hao-ran 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期39-47,共9页
Ab initio calculations are used to understand the fundamental mechanism of the solid solution softening/hardening of the Mo-binary system.The results reveal that the Mo-Ti,Mo-Ta,Mo-Nb,and Mo-W interactions are primari... Ab initio calculations are used to understand the fundamental mechanism of the solid solution softening/hardening of the Mo-binary system.The results reveal that the Mo-Ti,Mo-Ta,Mo-Nb,and Mo-W interactions are primarily attractive with negative heats of formation,while the interactions of Mo-Re,and Mo-Zr would be mainly repulsive with positive heats of formation.It is also shown that the addition of Re and Zr would cause the solid solution softening of Mo by the decrease of the unstable stacking fault energy and the increase of ductility.On the contrary,the elements of W,Ta,Ti,and Nb could bring about the solid-solution hardening of Mo through the impediment of the slip of the dislocation and the decrease of ductility.Electronic structures indicate that the weaker/stronger chemical bonding due to the alloying elements should fundamentally induce the solid solution softening/hardening of Mo.The results are discussed and compared with available evidence in literatures,which could deepen the fundamental understanding of the solid solution softening/hardening of the binary metallic system. 展开更多
关键词 stacking fault energy electronic structure MOLYBDENUM solid solution softening/hardening ab initio calculation
下载PDF
Stacking fault energy,yield stress anomaly, and twinnability of Ni_3Al:A first principles study 被引量:1
7
作者 刘利利 吴小志 +2 位作者 王锐 李卫国 刘庆 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期407-414,共8页
Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of... Using first principles calculations combined with the quasiharmonic approach, we study the effects of temperature on the elastic constants, generalized stacking fault energies, and generalized planar fault energies of Ni3Al. The antiphase boundary energies, complex stacking fault energies, superlattice intrinsic stacking fault energies, and twinning energies decrease slightly with temperature. Temperature dependent anomalous yield stress of Ni3Al is predicted by the energybased criterion based on elastic anisotropy and antiphase boundary energies. It is found that p increases with temperature and this can give a more accurate description of the anomalous yield stress in Ni3Al. Furthermore, the predicted twinnablity of Ni3Al is also decreasing with temperature. 展开更多
关键词 NI3AL stacking fault energy anomalous yield stress twinnability
下载PDF
EFFECT OF Cr AND Al CONTENT ON THE STACKING FAULT ENERGY IN r-Fe-Mn ALLOYS
8
作者 X.Tian K.S.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第3期211-216,共6页
The effects of Cr and Al content were investigated on the stacking fault energy in austenitic Fe-31Mn-(0-7.26)Cr-0.96C and Fe-31Mn-(0-8.68)Al-0.85C alloys by the thermodynamic analysis. The results show that the addit... The effects of Cr and Al content were investigated on the stacking fault energy in austenitic Fe-31Mn-(0-7.26)Cr-0.96C and Fe-31Mn-(0-8.68)Al-0.85C alloys by the thermodynamic analysis. The results show that the additions of chromium or aluminum increase the non-magnetic component of the stacking fault energy in the γ-Fe-Mn alloys, and the effect of aluminum is larger than that of chromium. The change in the magnetic entropy caused in the antiferromagnetic transition increases the free energy difference between the γ and s phases in the γr-Fe-Mn alloys. The effects of chromium and aluminum on the magnetic component were discussed on the basis of the influence of both upon the antiferromagnetic transition in the γ-Fe-Mn alloys. 展开更多
关键词 stacking fault energy THERMODYNAMICS antiferromagnetic transition
下载PDF
Variation in Creep Rupture of γ′ Strengthened Superalloys with Stacking Fault Energy of Matrices
9
作者 阳志安 师昌绪 肖耀天 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第4期250-256,共7页
The correlation between the creep rupture behaviour and the stacking fault energy of matrices of γ′strengthened superalloys has been studied dur- ing constant load creep.At high temperature and intermediate stress,t... The correlation between the creep rupture behaviour and the stacking fault energy of matrices of γ′strengthened superalloys has been studied dur- ing constant load creep.At high temperature and intermediate stress,the creep rupture time and strain strongly depend on the stacking fault energy of matrices rather than the creep friction stress,but at higher stress,the role of grain boundary carbides becomes more obvious. However,in the considerably extensive stress range investigated here,the mean creep rate is a power function of the stacking fault energy of matrices and the power index decreases with in- creasing initial applied stress.Particularly,at inter- mediate stresses the product of this index and the initial applied stress compensated by the shear modulus is same for two series of superalloys. Hence,this product may be a criterion predicting that the matrix deformation controls high tempera- ture creep rupture. 展开更多
关键词 creep rupture SUPERALLOY stacking fault energy
下载PDF
Stacking fault probability and stacking fault energy in CoNi alloys
10
作者 周伟敏 江伯鸿 +1 位作者 刘岩 漆璿 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期555-558,共4页
The stacking fault probability of CoNi alloys with different contents of Ni was measured by X ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing ... The stacking fault probability of CoNi alloys with different contents of Ni was measured by X ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing temperature. The thermodynamical calculation has found an equation that can express the stacking fault energy γ of CoNi at temperature T . The phase equilibrium temperature depends on the composition of the certain alloy. The relationship between stacking fault energy γ and stacking fault probability P sf is determined. 展开更多
关键词 stacking fault energy stacking fault probability martensitic transformation CoNi alloy
下载PDF
Interplay between temperature-dependent strengthening mechanisms and mechanical stability in high-performance austenitic stainless steels
11
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +3 位作者 Saeed Sadeghpour Milad Zolfipour Aghdam Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2182-2188,共7页
The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compare... The effects of deformation temperature on the transformation-induced plasticity(TRIP)-aided 304L,twinning-induced plasti-city(TWIP)-assisted 316L,and highly alloyed stable 904L austenitic stainless steels were compared for the first time to tune the mechan-ical properties,strengthening mechanisms,and strength-ductility synergy.For this purpose,the scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),X-ray diffraction(XRD),tensile testing,work-hardening analysis,and thermodynamics calcu-lations were used.The induced plasticity effects led to a high temperature-dependency of work-hardening behavior in the 304L and 316L stainless steels.As the deformation temperature increased,the metastable 304L stainless steel showed the sequence of TRIP,TWIP,and weakening of the induced plasticity mechanism;while the disappearance of the TWIP effect in the 316L stainless steel was also observed.However,the solid-solution strengthening in the 904L superaustenitic stainless steel maintained the tensile properties over a wide temper-ature range,surpassing the performance of 304L and 316L stainless steels.In this regard,the dependency of the total elongation on the de-formation temperature was less pronounced for the 904L alloy due to the absence of additional plasticity mechanisms.These results re-vealed the importance of solid-solution strengthening and the associated high friction stress for superior mechanical behavior over a wide temperature range. 展开更多
关键词 austenitic stainless steels mechanical behavior stacking fault energy METASTABILITY mechanical twinning
下载PDF
Temperature-jump tensile tests to induce optimized TRIP/TWIP effect in a metastable austenitic stainless steel
12
作者 Mohammad Javad Sohrabi Hamed Mirzadeh +2 位作者 Saeed Sadeghpour Abdol Reza Geranmayeh Reza Mahmudi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2025-2036,共12页
In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-du... In the present work,plastic deformation mechanisms were initially tailored by adjusting the deformation temperature in the range of 0 to 200℃ in AISI 304L austenitic stainless steel,aiming to optimize the strength-ductility synergy.It was shown that the combined twinning-induced plasticity(TWIP)/transformation-induced plasticity(TRIP)effects and a wider strain range for the TRIP effect up to higher strains by adjusting the deformation temperature are good strategies to improve the strength-ductility synergy of this metastable stainless steel.In this regard,by consideration of the observed temperature-dependency of plastic deformation,the controlled sequence of TWIP and TRIP effects for archiving superior strength-ductility trade-off was intended by the pre-designed temperature jump tensile tests.Accordingly,the optimum tensile toughness of 846 MJ/m^(3) and total elongation to 133% were obtained by this strategy via exploiting the advantages of the TWIP effect at 100℃ and the TRIP effect at 25℃ at the later stages of the straining.Consequently,a deformation-temperature-transformation(DTT)diagram was developed for this metastable alloy.Moreover,based on work-hardening analysis,it was found that the main phenomenon constraining further improvement in the ductility and strengthening was the yielding of the deformation-induced α′-martensite. 展开更多
关键词 metastable stainless steels transformation-induced plasticity twinning-induced plasticity stacking fault energy mechanical properties
下载PDF
New insights into the properties of high-manganese steel 被引量:9
13
作者 Wolfgang Bleck 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期782-796,共15页
In the Collaborative Research Centre 761’s“Steel ab initio-quantum mechanics guided design of new Fe based materials,”scientists and engineers from RWTH Aachen University and the Max Planck Institute for Iron Resea... In the Collaborative Research Centre 761’s“Steel ab initio-quantum mechanics guided design of new Fe based materials,”scientists and engineers from RWTH Aachen University and the Max Planck Institute for Iron Research conducted research on mechanism-controlled material development with a particular focus on high-manganese alloyed steels.From 2007 to 2019,a total of 55 partial projects and four transfer projects with industrial participation(some running until 2021)have studied material and process design as well as material characterization.The basic idea of the Collaborative Research Centre was to develop a new methodological approach to the design of structural materials.This paper focuses on selected results with respect to the mechanical properties of high-manganese steels,their underlying physical phenomena,and the specific characterization and modeling tools used for this new class of materials.These steels have microstructures that require characterization by the use of modern methods at the nm-scale.Along the process routes,the generation of segregations must be taken into account.Finally,the mechanical properties show a characteristic temperature dependence and peculiarities in their fracture behavior.The mechanical properties and especially bake hardening are affected by short-range ordering phenomena.The strain hardening can be adjusted in a never-before-possible range,which makes these steels attractive for demanding sheet-steel applications. 展开更多
关键词 high-manganese steels stacking fault energy TWINNING short-range ordering mechanical properties
下载PDF
Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations 被引量:7
14
作者 T.Cai K.Q.Li +4 位作者 Z.J.Zhang P.Zhang R.Liu J.B.Yang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第18期61-65,共5页
The variation of stacking fault energy(SFE)in a number of binary Cu alloys is predicted through considering the Suzuki segregation by the full potential linearly augmented plane wave(FPLAPW)method.The calculated resul... The variation of stacking fault energy(SFE)in a number of binary Cu alloys is predicted through considering the Suzuki segregation by the full potential linearly augmented plane wave(FPLAPW)method.The calculated results show that some solute atoms(Mg,Al,Si,Zn,Ga,Ge,Cd,Sn,and Pb),which prefer to form the Suzuki segregation,may decrease the value of SFE;while the others(Ti,Mn,Fe,Ni,Zr,Ag,and Au),which do not cause the Suzuki segregation may not decrease the SFE.Furthermore,it is interesting to find that the former alloying elements are located on the right of Cu group while the latter on the left of Cu group in the periodic table of elements.The intrinsic reasons for the new findings can be traced down to the valences electronic structure of solute and Cu atoms,i.e.,the similarity of valence electronic structure between solute and Cu atoms increases the value of SFE,while the difference decreases the value of SFE. 展开更多
关键词 Cu-alloy Deformation behavior First-principles calculation stacking fault energy
原文传递
Evolution of microstructure and texture of cold-drawn polycrystalline Ag with low stacking fault energy 被引量:4
15
作者 MA XiaoGuang CHEN Jian +1 位作者 CHEN Zheng YAN Wen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第7期1146-1153,共8页
The evolution of microstructure and texture for drawn polycrystalline Ag was investigated by transmission electron microscopy and electron backscattering diffraction.The results show that there are deformation twins a... The evolution of microstructure and texture for drawn polycrystalline Ag was investigated by transmission electron microscopy and electron backscattering diffraction.The results show that there are deformation twins and some un-tangled discrete dislocations at low strains.When the strain is increased to 0.58,a lot of high density dislocation walls and microbands come into being.At the same time,some twins lose the twinning relationship of 60°<111>.At a strain of 0.94,both dislocation boundaries and twin boundaries will rotate to the axis direction of wires and the shear bands start to appear.When the strain is higher than 1.96,most of the boundaries are parallel to the drawn direction.Texture analysis indicates that with the strain increasing,the volume fraction of complex texture component decreases,but<111>and<100>texture components increase.However,the variation in the volume fraction of each texture component as strains is not evident when the strains are higher than 0.58.For polycrystalline Ag with low stacking fault energy,complex texture components are easily formed. 展开更多
关键词 polycrystalline Ag cold-drawn deformation MICROSTRUCTURE deformation twinning stacking fault energy
原文传递
Stacking fault,dislocation dissociation,and twinning in Pt_(3) Hf compounds:a DFT study 被引量:4
16
作者 Shun-Meng Zhang Kai Xiong +3 位作者 Cheng-Chen Jin Zong-Bo Li Jun-Jie He Yong Mao 《Rare Metals》 SCIE EI CAS CSCD 2021年第4期1020-1030,共11页
The Pt3Hf compound plays a decisive role in strengthening Pt-Hf alloy systems.Evaluating the stacking fault,dislocation dissociation,and twinning mechanisms in Pt3Hf is the first step in understanding its plastic beha... The Pt3Hf compound plays a decisive role in strengthening Pt-Hf alloy systems.Evaluating the stacking fault,dislocation dissociation,and twinning mechanisms in Pt3Hf is the first step in understanding its plastic behavior.In this work,the generalized stacking fault energies(GSFE),including the complex stacking fault(CSF),the superlattice intrinsic stacking fault(SISF),and the antiphase boundary(APB) energies,are calculated using firstprinciples calculations.The dislocation dissociation,deformation twinning,and yield behavior of Pt3Hf are discussed based on GSFE after their incorporation into the Peierls-Nabarro model.We found that the unstable stacking fault energy(γus) of(111)APB is lower than that of SISF and(010) APB,implying that the energy barrier and critical stress required for(111)APB generation are lower than those required for(010)APB formation.This result indicates that the a<110> superdislocation will dissociate into two collinear a/2<110> superpartial dislocations.The a/2<110> dislocation could further dissociate into a a/6<112> Shockley dislocation and a a/3<211> superShockley dislocation connected by a SISF,which results in an APB→SISF transformation.The study also discovered that Pt3 Hf exhibits normal yield behavior,although the cross-slip of a a/2<110> dislocation is not forbidden,and the anomalous yield criterion is satisfied.Moreover,it is observed that the energy barrier and critical stress for APB formation increases with increasing pressure and decreases as the temperature is elevated.When the temperature rises above 1400 K,the a/2<110> dislocation slipping may change from the {111} planes to the {100} planes. 展开更多
关键词 Platinum alloys stacking fault energy Dislocation dissociation TWINNING FIRST-PRINCIPLES
原文传递
Impact of replacement of Re by W on dislocation slip mediated creeps of γ'-Ni_(3)Al phases 被引量:2
17
作者 Zhou YI Yun-lei XU +1 位作者 Ping PENG Jiang-hua CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期2013-2023,共11页
The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surface... The anomalous flow behavior of γ'-Ni_(3)Al phases at high temperature is closely related to the cross-slip of 1/2<110>{111}super-partial dislocations.Generalized stacking fault energy curves(i.e.,Γ-surfaces)along the lowest energy path can provide a great deal of information on the nucleation and movement of dislocations.With the first-principles calculation,the interplay between Re and W,Mo,Ta,Ti doped at preferential sites and their synergetic influence on Γ-surfaces and ideal shear strength(τ_(max))in γ'-Ni_(3)Al phases are investigated.Similar to single Re-addition,the Suzuki segregation of W at stacking faults is demonstrated to enable to impede the movement of 1/6<112>{111} Shockley partial dislocations and promote the cross-slip of 1/2<110>{111}super-partial dislocations.With the replacement of a part of Re by W,a decreased γ_(APB)^(111)/γ_(APB)^(001) indicates that the anomalous flow behavior of γ'phases at high temperature is not as excellent as the double Re-addition,but an increasedτmax means that the creep rupture strength of Ni-based single crystal superalloys can be benefited from this replacement to some extent,especially in the co-segregation of Re and W at Al−Al sites.As the interaction between X1_(Al) and X2_(Al) point defects is characterized by an correlation energy function ΔE^(X1_(Al)+X2_(Al))(d),it is found that both strong attraction and strong repulsion are unfavarable for the improvement of yield strengths of γ'phase. 展开更多
关键词 Ni-based single crystal superalloy γ'-Ni_(3)Al generalized stacking fault energy ideal shear strength dislocation CROSS-SLIP
下载PDF
Texture and Microstructure Evolution During Tensile Testing of TWIP Steels with Diverse Stacking Fault Energy 被引量:2
18
作者 Yanxin WU Di TANG +2 位作者 Haitao JIANG Zhenli MI Haitao JING 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第6期713-720,共8页
Texture and microstructure evolution in two kinds of the twinning induced plasticity (TWIP) steels (Fe-Mn- Si-AI and Fe-Mn-C) with diverse stacking fault energies during tensile testing were investigated by interr... Texture and microstructure evolution in two kinds of the twinning induced plasticity (TWIP) steels (Fe-Mn- Si-AI and Fe-Mn-C) with diverse stacking fault energies during tensile testing were investigated by interrupted testing. The strain-hardening rate curves of the two steels were quite similar, but the texture characterization curves (maximum of pole density measured by X-ray diffraction) were varied. According to the curvature of max pole density curves, the evolution of the texture and the microstructure can be divided into three stages: low strain stage, medium stage and high stage. In low strain stage the difference of the microstructure came from the intensity of dislocation, which was much smaller in Fe-Mn-Si-AI. The main difference of the microstructure in medium and high strain stages originated from the numbers of activated twin systems. There were more than one twin systems activated in Fe-Mn-C, while only a single twin system activated in Fe-Mn-Si-AI. Texture showed various differences in the whole tensile process because it was affected by their micromechanism, such as concentration of the dislocation and the activation of twin systems. Texture in low strain stage was connected with annealing twin; the evolution ofthe texture was mainly induced by deformation twin generation. More than one activated twin systems in medium and high stages may counteract each other in the view of concentration of the grain orientations. 展开更多
关键词 Work hardening rate TEXTURE TWIP steel stacking fault energy
原文传递
Influence of Temperature on Stacking Fault Energy and Creep Mechanism of a Single Crystal Nickel-based Superalloy 被引量:9
19
作者 Sugui Tian Xinjie Zhu +3 位作者 Jing Wu Huichen Yu Delong Shu Benjiang Qian 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期790-798,共9页
The influence of temperatures on the stacking fault energies and deformation mechanism of a Re- containing single crystal nickel-based superalloy during creep at elevated temperatures was investigated by means of calc... The influence of temperatures on the stacking fault energies and deformation mechanism of a Re- containing single crystal nickel-based superalloy during creep at elevated temperatures was investigated by means of calculating the stacking fault energy of alloy, measuring creep properties and performing contrast analysis of dislocation configuration. The results show that the alloy at 760 ℃ possesses lower stacking fault energy, and the stacking fault of alloy increases with increasing temperature. The defor- mation mechanism of alloy during creep at 760 ℃ is 7' phase sheared by 〈110〉 super-dislocations, which may be decomposed to form the configuration of Shockley partials plus super-lattice intrinsic stacking fault, while the deformation mechanism of alloy during creep at 1070 ℃ is the screw or edge super- dislocations shearing into the rafted 7' phase. But during creep at 7(50 and 980 ℃, some super- dislocations shearing into 7' phase may cross-slip from the {111} to {100} planes to form the K-W locks with non-plane core structure, which may restrain the dislocations slipping to enhance the creep resis- tance of alloy at high temperature. The interaction between the Re and other elements may decrease the diffusion rate of atoms to improve the microstructure stability, which is thought to be the main reason why the K-W locks are to be kept in the Re-containing superalloy during creep at 980 ℃. 展开更多
关键词 Single crystal nickel-based superalloy stacking fault energy Creep Contrast analysis Deformation mechanism
原文传递
Twinnability of Al-Mg alloys:A first-principles interpretation 被引量:1
20
作者 Dong-dong ZHAO Yan-jun LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第6期1313-1318,共6页
Al-Mg alloys are considered to have potentials to form twins during deformation because Mg can reduce the intrinsicstacking fault energy?ISFE of Al.Nevertheless,twinning has rarely been found in Al-Mg alloys even subj... Al-Mg alloys are considered to have potentials to form twins during deformation because Mg can reduce the intrinsicstacking fault energy?ISFE of Al.Nevertheless,twinning has rarely been found in Al-Mg alloys even subjected to various severeplastic deformation(SPD)techniques.In order to probe the twinning propensity of Al-Mg alloys,first-principles calculations werecarried out to investigate the effects of Mg and vacancies on the generalized planar fault energy(GPFE)of Al.It is found that bothMg and vacancies exhibit a Suzuki segregation feature to the stacking fault,and have the influence of decreasing the?ISFE of Al.However,?ISFE does not decrease and the twinnability parameterτa of Al does not increase monotonically with increasing Mgconcentration in the alloy.On the basis ofτa evaluated from the calculated GPFE of Al-Mg alloys,we conclude that deformationtwinning is difficult for Al-Mg alloys even with a high content of Mg.Besides,the decrease of?ISFE caused by the introduction ofMg and vacancies is supposed to have the effect of improving the work-hardening rate and facilitating the formation of bandstructures in Al-Mg alloys subjected to SPD. 展开更多
关键词 generalized planar fault energy intrinsic stacking fault energy Suzuki segregation Mg VACANCY Al-Mg alloys
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部