Equivalent staggered-grid(ESG) as a new family of schemes has been utilized in seismic modeling,imaging,and inversion.Traditionally,the Taylor series expansion is often applied to calculate finite-difference(FD) coeff...Equivalent staggered-grid(ESG) as a new family of schemes has been utilized in seismic modeling,imaging,and inversion.Traditionally,the Taylor series expansion is often applied to calculate finite-difference(FD) coefficients on spatial derivatives,but the simulation results suffer serious numerical dispersion on a large frequency zone.We develop an optimized equivalent staggered-grid(OESG) FD method that can simultaneously suppress temporal and spatial dispersion for solving the second-order system of the 3 D elastic wave equation.On the one hand,we consider the coupling relations between wave speeds and spatial derivatives in the elastic wave equation and give three sets of FD coefficients with respect to the P-wave,S-wave,and converted-wave(C-wave) terms.On the other hand,a novel plane wave solution for the 3 D elastic wave equation is derived from the matrix decomposition method to construct the time-space dispersion relations.FD coefficients of the OESG method can be acquired by solving the new dispersion equations based on the Newton iteration method.Finally,we construct a new objective function to analyze P-wave,S-wave,and C-wave dispersion concerning frequencies.The dispersion analyses show that the presented method produces less modeling errors than the traditional ESG method.The synthetic examples demonstrate the effectiveness and superiority of the presented method.展开更多
Porosity and water saturations are the most important petrophysical parameters of hydrocarbon reservoirs that accurate assessment of them in hydrocarbon reservoirs is an effective tool, important and efficient for ind...Porosity and water saturations are the most important petrophysical parameters of hydrocarbon reservoirs that accurate assessment of them in hydrocarbon reservoirs is an effective tool, important and efficient for industry experts, in the context of a comprehensive study of reservoirs and production and management process of reservoir. In this study, using data from five wells of Mansuri oil field, and using the sequential simulation Gaussian method and using Petrel software, the trend of Porosity and water saturation changes in the mentioned field for four zones was simulated. Also the average maps for each zone have been created that results of the simulation parameters in this map showed that highest average porosity is 0.1401 and 0.2756 at least saturation of water is related to zone 1. Finally result of the simulation indicates the Zone 1 is of the best reservoir Zones.展开更多
文摘Equivalent staggered-grid(ESG) as a new family of schemes has been utilized in seismic modeling,imaging,and inversion.Traditionally,the Taylor series expansion is often applied to calculate finite-difference(FD) coefficients on spatial derivatives,but the simulation results suffer serious numerical dispersion on a large frequency zone.We develop an optimized equivalent staggered-grid(OESG) FD method that can simultaneously suppress temporal and spatial dispersion for solving the second-order system of the 3 D elastic wave equation.On the one hand,we consider the coupling relations between wave speeds and spatial derivatives in the elastic wave equation and give three sets of FD coefficients with respect to the P-wave,S-wave,and converted-wave(C-wave) terms.On the other hand,a novel plane wave solution for the 3 D elastic wave equation is derived from the matrix decomposition method to construct the time-space dispersion relations.FD coefficients of the OESG method can be acquired by solving the new dispersion equations based on the Newton iteration method.Finally,we construct a new objective function to analyze P-wave,S-wave,and C-wave dispersion concerning frequencies.The dispersion analyses show that the presented method produces less modeling errors than the traditional ESG method.The synthetic examples demonstrate the effectiveness and superiority of the presented method.
文摘Porosity and water saturations are the most important petrophysical parameters of hydrocarbon reservoirs that accurate assessment of them in hydrocarbon reservoirs is an effective tool, important and efficient for industry experts, in the context of a comprehensive study of reservoirs and production and management process of reservoir. In this study, using data from five wells of Mansuri oil field, and using the sequential simulation Gaussian method and using Petrel software, the trend of Porosity and water saturation changes in the mentioned field for four zones was simulated. Also the average maps for each zone have been created that results of the simulation parameters in this map showed that highest average porosity is 0.1401 and 0.2756 at least saturation of water is related to zone 1. Finally result of the simulation indicates the Zone 1 is of the best reservoir Zones.