Aluminum 5052(Al 5052)-stainless steel 316(SS 316)plates were explosively cladded with Al 1100,pure copper and SS 304 interlayers.The operational parameters viz.,standoff distance,explosive mass ratio(mass ratio of th...Aluminum 5052(Al 5052)-stainless steel 316(SS 316)plates were explosively cladded with Al 1100,pure copper and SS 304 interlayers.The operational parameters viz.,standoff distance,explosive mass ratio(mass ratio of the explosive to the flyer plate)and inclination angle were varied and the results were presented.The advent of interlayer relocates the lower boundary of the welding window,and enhances the welding regime by 40%.A triaxial welding window,considering the influence of the third operational parameter,was developed as well.Use of interlayer transforms the continuous molten layer formed in the traditional Al 5052-SS 316 explosive clad interfaces into a smooth interface devoid or with a slender presence of intermetallic compounds.The microhardness,ram tensile and shear strengths of the interlayered clads are higher than those of the traditional explosive clads,and the maximum values are witnessed for stainless steel interlaced Al 5052-SS 316 explosive clads.展开更多
The 304 stainless steel strips were deposited one layer on carbon steel base metal by electroslag strip cladding (ESC) and submerged arc cladding (SAC), respectively. The solidification microstrueture of ESC metal...The 304 stainless steel strips were deposited one layer on carbon steel base metal by electroslag strip cladding (ESC) and submerged arc cladding (SAC), respectively. The solidification microstrueture of ESC metal was analyzed by the optical microscopy, scanning electron microscope and energy dispersive spectroscopy. The corrosion resistance studies of strip cladding metals were carried out in 10% oxalic acid electrolytic etching test. The results showed that the cladding metal obtained by ESC presented low content of C, high content of Cr and enough alloying element of Ni in the chemical composition. The transition zone of ESC with small width was almost parallel with the base metal, leading to a lower dilution. There are three types of solidification modes ( A→AF→FA ) occurred in the ESC metal due to the decrease of cooling rate and degree of dilution from the transition zone to the top of ESC metal. As a result, the microstructure of ESC metal exhibited mainly austenite with a small amount of ferrite, contributing to achievement of better corrosion resistance.展开更多
A plasma spraying plus laser remelting technique has been performed. onaustenite stainless steel (22Cr-13Ni-5Mn ) with a newly developed hydrogen resistantcoating material. The results show that the surface cladding l...A plasma spraying plus laser remelting technique has been performed. onaustenite stainless steel (22Cr-13Ni-5Mn ) with a newly developed hydrogen resistantcoating material. The results show that the surface cladding layer can effectively reducethe hydrogen content increasing of the stainless steel under the atmosphere of high pres-sure (30MPa), high temperature (300℃) and high purity (99. 995%) hydrogen andgreatly improve the hydrogen embrittlement resistance of the stain1ess steel. Throughanalysis of microstructure, a mechanism of hydrogen embrittlement resistance is presentedthat at room temperature, the surface oxidation films, both existing on the surface ofcoated and uncoated specimens, inhibit the adsorption and diffusion of hydrogen molecu-lae. However, at high temperature, it is the surface cladding layer with relatively low sol-ubility and Permeability for hydrogen that significantly reduces the amount of hydrogenentering into the interior of the material and improves its hydrogen embrittfement resis-tance.展开更多
Types of bimetal clad plate, manufacturing methods, and their fields of application were summarized. In particular,key aspects of the welding of clad-rolled stainless steel were described, including the weldability of...Types of bimetal clad plate, manufacturing methods, and their fields of application were summarized. In particular,key aspects of the welding of clad-rolled stainless steel were described, including the weldability of the base and clad metals, design criteria for the transition layer, the selection of the type of welding process and consumables used, types of blanking and welding bevels, preparation and assembly prior to welding, welding procedure requirements, post-weld cleaning and heat treatment, and welding quality inspection. This paper will serve as a reference for the welding technology used in future consumer applications in related fields.展开更多
Duplex stainless steel clad plate exhibits good performance and is relatively inexpensive,however,some difficulties must be overcome when welding different materials. In this study,submerged arc welding( SAW) was us...Duplex stainless steel clad plate exhibits good performance and is relatively inexpensive,however,some difficulties must be overcome when welding different materials. In this study,submerged arc welding( SAW) was used to weld Baosteel ship clad plates( 2205 + DH36),and the performance of the welded joints was tested. The results indicate that the mechanical properties and the corrosion resistance of the welded joints meet the required specifications. The distribution of the main anti-corrosive elements and the phase ratio of the welded joint are analyzed,thereby indicating excellent uniformity and confirming that the welded joint is corrosion resistant.展开更多
The 2205 duplex stainless + DH36 clad steel plate was welded by gas metal arc welding(GMAW), and the welding performance of the clad steel plate was investigated. The results show that the adaptability of the weldi...The 2205 duplex stainless + DH36 clad steel plate was welded by gas metal arc welding(GMAW), and the welding performance of the clad steel plate was investigated. The results show that the adaptability of the welding procedure for the base metal of carbon steel, the transition layer, and the cladding material is excellent. The test results indicate that the phase proportion and component dilution of the GMAW-welded joints of clad steel plate can be effectively controlled to yield joints with good mechanical properties and corrosion resistance.展开更多
Multi-layer laser cladding manufacturing is a newly developed rapid manufacturing technology. It is a powerful tool for direct fabrication of three-dimensional fully dense metal components and part repairing. In this ...Multi-layer laser cladding manufacturing is a newly developed rapid manufacturing technology. It is a powerful tool for direct fabrication of three-dimensional fully dense metal components and part repairing. In this paper, the microstructure evolution and properties of 316L stainless steel deposited with this technology was investigated, compact components with properties similar to the as-cast and wrought annealed material was obtained. Cracking was eliminated by introducing of supersonic vibration and application of parameter adjustment technologies.展开更多
The effect of clad metal composition on stress corrosion cracking (SCC) behavior of three types of SMAW filler metals (E308L-16, E309-16 and E316L-16), used for cladding components subjected to highly corrosive condit...The effect of clad metal composition on stress corrosion cracking (SCC) behavior of three types of SMAW filler metals (E308L-16, E309-16 and E316L-16), used for cladding components subjected to highly corrosive conditions, was investigated in boiling 43% MgCl2 solution. In order to evaluate the stress corrosion cracking susceptibility of the top layer, constant load tests and metallographic examinations in tested SCC specimens were conducted. The susceptibility to stress corrosion cracking was evaluated in terms of the time-to-fracture. Results showed that the E309-16 clad metal presented the best SCC resistance. This may be attributed to the presence of a discontinuous delta-ferrite network in the austenitic matrix, which acted as a barrier to cracks propagation. Concerning to E308-16 and E316L-16 clad metals, results showed that these presented a similar SCC test performance. Their higher SCC susceptibility may be attributed to the presence of continuous vermicular delta-ferrite in their microstructure.展开更多
In the past, stainless steel was utilized as cladding in many PWRs (pressurized water reactors), and its performance under irradiation was excellent. However, stainless steel was replaced by zirconium-based alloy as...In the past, stainless steel was utilized as cladding in many PWRs (pressurized water reactors), and its performance under irradiation was excellent. However, stainless steel was replaced by zirconium-based alloy as cladding material mainly due to its lower neutron absorption cross section. Now, stainless steel cladding appears as a possible solution for safety problems related to hydrogen production and explosion as occurred in Fukushima Daiichi accident. The aim of this paper is to discuss the steady-state irradiation performance using stainless steel as cladding. The results show that stainless steel rods display higher fuel temperatures and wider pellet-cladding gaps than Zircaloy rods and no gap closure. The thermal performance of the two rods is very similar and the neutron absorption penalty due to stainless steel use could be compensating by combining small increase in U-235 enrichment and pitch size changes.展开更多
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o...In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.展开更多
Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of ...Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temp...Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temperature start-up,high energy density,and low noise.As one of the core components,the bipolar plates(BPs)play an important role in the PEMFC stack.Traditional graphite BPs and composite BPs have been criticized for their shortcomings such as low strength,high brittleness,and high processing cost.In contrast,stainless steel BPs(SSBPs)have recently attracted much attention of domestic and foreign researchers because of their excellent comprehensive performance,low cost,and diverse options for automobile applications.However,the SSBPs are prone to corrosion and passivation in the PEMFC working environment,which lead to reduced output power or premature failure.This review is aimed to summarize the corrosion and passivation mechanisms,characterizations and evaluation,and the surface modification technologies in the current SSBPs research.The non-coating and coating technical routes of SSBPs are demonstrated,such as substrate component regulation,thermal nitriding,electroplating,ion plating,chemical vapor deposition,and physical vapor deposition,etc.Alternative coating materials for SSBPs are metal coatings,metal nitride coatings,conductive polymer coatings,and polymer/carbon coatings,etc.Both the surface modification technologies can solve the corrosion resistance problem of stainless steel without affecting the contact resistance,however still facing restraints such as long-time stability,feasibility of low-cost,and mass production process.This paper is believed to enrich the knowledge of high-performance and long-life BPs applied for PEMFC automobiles.展开更多
Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PE...Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PEMFC environment was investigated. It was showed that the plating film was distributed on the surface of 316 stainless steel like isolated islands with height less than 50 nm. The XPS, XRD results showed that a smooth and strong chemical inert film of Nb O and Nb2O5 was formed on the surface of 316 stainless steel. In simulated cathodic condition, the corrosion potential of Nb coated stainless steel was improved by 244 m V, whilst in an anodic condition, it was improved by 105 m V. The current densities for the coated 316 stainless steel were decreased to 2.479 4 μA·cm-2 from 14.810 μA·cm-2 at-0.1 V and to 0.576 μA·cm-2 from 13.417 μA/·cm-2 at 0.6 V, respectively. It was implied that the niobium coating effectively decreased the corrosion rate. The results of the electrochemical tests indicated that the corrosion resistance of stainless steel was greatly improved after coated with niobium.展开更多
In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg...In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg·L-1 F-, and interfacial contact resistance was measured after corrosion tests. The experimental results show that the passive current density lowers with decreasing the concentration of H2SO4. The interfacial contact resistance between carbon paper and passive film formed in the simulated PEMFC environment is higher than the goal of bipolar plate for PEMFC. Surface conductivity should be further reduced by surface modification.展开更多
To meet the demand of the domestic pressure vessel industry for roll-bonded clad steel plates, Baosteel has developed an S30403 + Q345R roll-bonded clad steel plate. Comprehensive inspections of the composition, micr...To meet the demand of the domestic pressure vessel industry for roll-bonded clad steel plates, Baosteel has developed an S30403 + Q345R roll-bonded clad steel plate. Comprehensive inspections of the composition, microstructure, and properties are made to systematically evaluate the steel plate in the normalized and normalized + stress relieved states. The results show the cladding interface of the S30403 + Q345R roll-bonded clad steel plate has high shear strength, the base metal has good properties, and the mechanical properties of the steel plate head and tail are uniform. The performance is fully consistent with the technical requirements of the roll-bonded clad steel plate for pressure vessels.展开更多
In this study,the interface characteristics of a direct hot rolling titanium-clad steel plate were analyzed, and the mechanism of interface cracking was explored. The detrimental effect from the formation of TiFe ,TiC...In this study,the interface characteristics of a direct hot rolling titanium-clad steel plate were analyzed, and the mechanism of interface cracking was explored. The detrimental effect from the formation of TiFe ,TiC,and a Si-enriched layer on the bonding strength was clarified, and an industrial-scaled titanium-clad steel plate with shear strength over 200 MPa was produced with a carefully set schedule accordingly. It was found that hot rolling titanium-clad steel plates had a flat interface without obvious cracks. In the rolling process,both Ti and Fe atoms interdiflhsed,but Fe difthsed much faster than Ti. The Fe-diffused area consisted of three regions. After a high temperature heat treatment, the diffusion depth of Fe and Ti elements increased significantly and evident Si segregation and TiFe layers were identified. Thermal cracking initiated in the Si segregation layer and then propagated along the TiFe layer and Fe-diffused layer on the titanium side.展开更多
Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thi...Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.展开更多
Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-st...Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-strength and high-toughness clad steel plate with a shear strength of over 310 MPa for the nuclear power plant' s safety injection tank. The properties of the quenched and tempered and the simulated post-weld heat treatment states are systematically studied herein through a comprehensive inspection and evaluation of the composition,microstructure,and properties of the clad steel plate. The results show that the bonding interface has high shear strength and that the base metal has high strength and good toughness at low temperatures. Hence, the performance fully meets the technical requirements of the CAP1400 nuclear power plant' s safety injection tank in the country' s nuclear demonstration project. The roll-bonded clad steel plate can be used to manufacture the safety injection tank of the CAP1400 nuclear power plant.展开更多
To meet the demand of the pressure vessel industry, Baosteel has developed an S11306 + SA516Gr70 roll-bonded clad steel plate. Comprehensive inspections of the composition, microstructure, and properties are performe...To meet the demand of the pressure vessel industry, Baosteel has developed an S11306 + SA516Gr70 roll-bonded clad steel plate. Comprehensive inspections of the composition, microstructure, and properties are performed to systematically evaluate the steel plate in normalized state and normalized + stress relieved state. The results show the cladding interface of the Sl1306 + SA516Gr70 roll-bonded clad steel plate has high shear strength, and the base metal has good mechanical properties. The performance is fully consistent with the technical requirements of the roll-bonded clad steel plate for pressure vessels.展开更多
In this paper,a brief introduction on clad-rolling heavy steel plates of 90 mm and 140 mm thick is presented.The steel plates were hot rolled by 265mm slabs that are cladded by double 135mm continuous casting slabs of...In this paper,a brief introduction on clad-rolling heavy steel plates of 90 mm and 140 mm thick is presented.The steel plates were hot rolled by 265mm slabs that are cladded by double 135mm continuous casting slabs of Q235 steel.After hot rolling,interface of the cladding slabs completely disappeared, revealing uniform grains similar to the rest of the materials.Ultrasonic tests were carried out on both steel plates,demonstrating excellent results.Through thickness tensile tests were also implemented on both steel plates,resulting in perfect mechanical properties complying with specific standards.The result proves that a minimum reduction rate of 1.89 is available in producing 140 mm thick steel plate with excellent through thickness properties.展开更多
文摘Aluminum 5052(Al 5052)-stainless steel 316(SS 316)plates were explosively cladded with Al 1100,pure copper and SS 304 interlayers.The operational parameters viz.,standoff distance,explosive mass ratio(mass ratio of the explosive to the flyer plate)and inclination angle were varied and the results were presented.The advent of interlayer relocates the lower boundary of the welding window,and enhances the welding regime by 40%.A triaxial welding window,considering the influence of the third operational parameter,was developed as well.Use of interlayer transforms the continuous molten layer formed in the traditional Al 5052-SS 316 explosive clad interfaces into a smooth interface devoid or with a slender presence of intermetallic compounds.The microhardness,ram tensile and shear strengths of the interlayered clads are higher than those of the traditional explosive clads,and the maximum values are witnessed for stainless steel interlaced Al 5052-SS 316 explosive clads.
基金sponsored by National Natural Science Foundation of China(Grant No.51101050)Fundamental Research Funds for the Central Universities(Grant No.2015B22614)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20141156)
文摘The 304 stainless steel strips were deposited one layer on carbon steel base metal by electroslag strip cladding (ESC) and submerged arc cladding (SAC), respectively. The solidification microstrueture of ESC metal was analyzed by the optical microscopy, scanning electron microscope and energy dispersive spectroscopy. The corrosion resistance studies of strip cladding metals were carried out in 10% oxalic acid electrolytic etching test. The results showed that the cladding metal obtained by ESC presented low content of C, high content of Cr and enough alloying element of Ni in the chemical composition. The transition zone of ESC with small width was almost parallel with the base metal, leading to a lower dilution. There are three types of solidification modes ( A→AF→FA ) occurred in the ESC metal due to the decrease of cooling rate and degree of dilution from the transition zone to the top of ESC metal. As a result, the microstructure of ESC metal exhibited mainly austenite with a small amount of ferrite, contributing to achievement of better corrosion resistance.
文摘A plasma spraying plus laser remelting technique has been performed. onaustenite stainless steel (22Cr-13Ni-5Mn ) with a newly developed hydrogen resistantcoating material. The results show that the surface cladding layer can effectively reducethe hydrogen content increasing of the stainless steel under the atmosphere of high pres-sure (30MPa), high temperature (300℃) and high purity (99. 995%) hydrogen andgreatly improve the hydrogen embrittlement resistance of the stain1ess steel. Throughanalysis of microstructure, a mechanism of hydrogen embrittlement resistance is presentedthat at room temperature, the surface oxidation films, both existing on the surface ofcoated and uncoated specimens, inhibit the adsorption and diffusion of hydrogen molecu-lae. However, at high temperature, it is the surface cladding layer with relatively low sol-ubility and Permeability for hydrogen that significantly reduces the amount of hydrogenentering into the interior of the material and improves its hydrogen embrittfement resis-tance.
文摘Types of bimetal clad plate, manufacturing methods, and their fields of application were summarized. In particular,key aspects of the welding of clad-rolled stainless steel were described, including the weldability of the base and clad metals, design criteria for the transition layer, the selection of the type of welding process and consumables used, types of blanking and welding bevels, preparation and assembly prior to welding, welding procedure requirements, post-weld cleaning and heat treatment, and welding quality inspection. This paper will serve as a reference for the welding technology used in future consumer applications in related fields.
文摘Duplex stainless steel clad plate exhibits good performance and is relatively inexpensive,however,some difficulties must be overcome when welding different materials. In this study,submerged arc welding( SAW) was used to weld Baosteel ship clad plates( 2205 + DH36),and the performance of the welded joints was tested. The results indicate that the mechanical properties and the corrosion resistance of the welded joints meet the required specifications. The distribution of the main anti-corrosive elements and the phase ratio of the welded joint are analyzed,thereby indicating excellent uniformity and confirming that the welded joint is corrosion resistant.
文摘The 2205 duplex stainless + DH36 clad steel plate was welded by gas metal arc welding(GMAW), and the welding performance of the clad steel plate was investigated. The results show that the adaptability of the welding procedure for the base metal of carbon steel, the transition layer, and the cladding material is excellent. The test results indicate that the phase proportion and component dilution of the GMAW-welded joints of clad steel plate can be effectively controlled to yield joints with good mechanical properties and corrosion resistance.
基金supported by the National Natural Science Foundation of China under the Grant No.50375096
文摘Multi-layer laser cladding manufacturing is a newly developed rapid manufacturing technology. It is a powerful tool for direct fabrication of three-dimensional fully dense metal components and part repairing. In this paper, the microstructure evolution and properties of 316L stainless steel deposited with this technology was investigated, compact components with properties similar to the as-cast and wrought annealed material was obtained. Cracking was eliminated by introducing of supersonic vibration and application of parameter adjustment technologies.
文摘The effect of clad metal composition on stress corrosion cracking (SCC) behavior of three types of SMAW filler metals (E308L-16, E309-16 and E316L-16), used for cladding components subjected to highly corrosive conditions, was investigated in boiling 43% MgCl2 solution. In order to evaluate the stress corrosion cracking susceptibility of the top layer, constant load tests and metallographic examinations in tested SCC specimens were conducted. The susceptibility to stress corrosion cracking was evaluated in terms of the time-to-fracture. Results showed that the E309-16 clad metal presented the best SCC resistance. This may be attributed to the presence of a discontinuous delta-ferrite network in the austenitic matrix, which acted as a barrier to cracks propagation. Concerning to E308-16 and E316L-16 clad metals, results showed that these presented a similar SCC test performance. Their higher SCC susceptibility may be attributed to the presence of continuous vermicular delta-ferrite in their microstructure.
文摘In the past, stainless steel was utilized as cladding in many PWRs (pressurized water reactors), and its performance under irradiation was excellent. However, stainless steel was replaced by zirconium-based alloy as cladding material mainly due to its lower neutron absorption cross section. Now, stainless steel cladding appears as a possible solution for safety problems related to hydrogen production and explosion as occurred in Fukushima Daiichi accident. The aim of this paper is to discuss the steady-state irradiation performance using stainless steel as cladding. The results show that stainless steel rods display higher fuel temperatures and wider pellet-cladding gaps than Zircaloy rods and no gap closure. The thermal performance of the two rods is very similar and the neutron absorption penalty due to stainless steel use could be compensating by combining small increase in U-235 enrichment and pitch size changes.
基金Funded by the National Natural Science Foundation of China(No.51975540)。
文摘In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.
基金financially supported by the National Basic Research Program of China (973 Program) (no. 2012CB215500)the National Key Technology Research and Development Program of China (no. 2015BAG06B00)+1 种基金Major Program of the National Natural Science Foundation of China (no. 61433013)National Natural Science Foundation of China (no. 21206012)
文摘Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by the National Natural Science Foundation of China(No.51704017)the National Key Research and Development plan of China(No.2018YFB1502403)the Communication Program for Young Scientist in USTB(No.QNXM20210010)。
文摘Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temperature start-up,high energy density,and low noise.As one of the core components,the bipolar plates(BPs)play an important role in the PEMFC stack.Traditional graphite BPs and composite BPs have been criticized for their shortcomings such as low strength,high brittleness,and high processing cost.In contrast,stainless steel BPs(SSBPs)have recently attracted much attention of domestic and foreign researchers because of their excellent comprehensive performance,low cost,and diverse options for automobile applications.However,the SSBPs are prone to corrosion and passivation in the PEMFC working environment,which lead to reduced output power or premature failure.This review is aimed to summarize the corrosion and passivation mechanisms,characterizations and evaluation,and the surface modification technologies in the current SSBPs research.The non-coating and coating technical routes of SSBPs are demonstrated,such as substrate component regulation,thermal nitriding,electroplating,ion plating,chemical vapor deposition,and physical vapor deposition,etc.Alternative coating materials for SSBPs are metal coatings,metal nitride coatings,conductive polymer coatings,and polymer/carbon coatings,etc.Both the surface modification technologies can solve the corrosion resistance problem of stainless steel without affecting the contact resistance,however still facing restraints such as long-time stability,feasibility of low-cost,and mass production process.This paper is believed to enrich the knowledge of high-performance and long-life BPs applied for PEMFC automobiles.
基金Funded by the National Natural Science Foundation of China(No.21276036)the Fundamental Research Funds for the Central Universities(No.3132014323)
文摘Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PEMFC environment was investigated. It was showed that the plating film was distributed on the surface of 316 stainless steel like isolated islands with height less than 50 nm. The XPS, XRD results showed that a smooth and strong chemical inert film of Nb O and Nb2O5 was formed on the surface of 316 stainless steel. In simulated cathodic condition, the corrosion potential of Nb coated stainless steel was improved by 244 m V, whilst in an anodic condition, it was improved by 105 m V. The current densities for the coated 316 stainless steel were decreased to 2.479 4 μA·cm-2 from 14.810 μA·cm-2 at-0.1 V and to 0.576 μA·cm-2 from 13.417 μA/·cm-2 at 0.6 V, respectively. It was implied that the niobium coating effectively decreased the corrosion rate. The results of the electrochemical tests indicated that the corrosion resistance of stainless steel was greatly improved after coated with niobium.
文摘In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg·L-1 F-, and interfacial contact resistance was measured after corrosion tests. The experimental results show that the passive current density lowers with decreasing the concentration of H2SO4. The interfacial contact resistance between carbon paper and passive film formed in the simulated PEMFC environment is higher than the goal of bipolar plate for PEMFC. Surface conductivity should be further reduced by surface modification.
文摘To meet the demand of the domestic pressure vessel industry for roll-bonded clad steel plates, Baosteel has developed an S30403 + Q345R roll-bonded clad steel plate. Comprehensive inspections of the composition, microstructure, and properties are made to systematically evaluate the steel plate in the normalized and normalized + stress relieved states. The results show the cladding interface of the S30403 + Q345R roll-bonded clad steel plate has high shear strength, the base metal has good properties, and the mechanical properties of the steel plate head and tail are uniform. The performance is fully consistent with the technical requirements of the roll-bonded clad steel plate for pressure vessels.
文摘In this study,the interface characteristics of a direct hot rolling titanium-clad steel plate were analyzed, and the mechanism of interface cracking was explored. The detrimental effect from the formation of TiFe ,TiC,and a Si-enriched layer on the bonding strength was clarified, and an industrial-scaled titanium-clad steel plate with shear strength over 200 MPa was produced with a carefully set schedule accordingly. It was found that hot rolling titanium-clad steel plates had a flat interface without obvious cracks. In the rolling process,both Ti and Fe atoms interdiflhsed,but Fe difthsed much faster than Ti. The Fe-diffused area consisted of three regions. After a high temperature heat treatment, the diffusion depth of Fe and Ti elements increased significantly and evident Si segregation and TiFe layers were identified. Thermal cracking initiated in the Si segregation layer and then propagated along the TiFe layer and Fe-diffused layer on the titanium side.
基金financially supported by the National Natural Science Foundation of China(No.21106012)the Educational Department Foundation of Liaoning Province of China(NO.L2014180)
文摘Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.
文摘Aiming to meet the demand of the country' s nuclear demonstration project on the CAP1400 nuclear power plant, Baosteel uses the roll-bonding technology and develops the SA-533 Type B CL. 1 + SA-240 Type 304L high-strength and high-toughness clad steel plate with a shear strength of over 310 MPa for the nuclear power plant' s safety injection tank. The properties of the quenched and tempered and the simulated post-weld heat treatment states are systematically studied herein through a comprehensive inspection and evaluation of the composition,microstructure,and properties of the clad steel plate. The results show that the bonding interface has high shear strength and that the base metal has high strength and good toughness at low temperatures. Hence, the performance fully meets the technical requirements of the CAP1400 nuclear power plant' s safety injection tank in the country' s nuclear demonstration project. The roll-bonded clad steel plate can be used to manufacture the safety injection tank of the CAP1400 nuclear power plant.
文摘To meet the demand of the pressure vessel industry, Baosteel has developed an S11306 + SA516Gr70 roll-bonded clad steel plate. Comprehensive inspections of the composition, microstructure, and properties are performed to systematically evaluate the steel plate in normalized state and normalized + stress relieved state. The results show the cladding interface of the Sl1306 + SA516Gr70 roll-bonded clad steel plate has high shear strength, and the base metal has good mechanical properties. The performance is fully consistent with the technical requirements of the roll-bonded clad steel plate for pressure vessels.
文摘In this paper,a brief introduction on clad-rolling heavy steel plates of 90 mm and 140 mm thick is presented.The steel plates were hot rolled by 265mm slabs that are cladded by double 135mm continuous casting slabs of Q235 steel.After hot rolling,interface of the cladding slabs completely disappeared, revealing uniform grains similar to the rest of the materials.Ultrasonic tests were carried out on both steel plates,demonstrating excellent results.Through thickness tensile tests were also implemented on both steel plates,resulting in perfect mechanical properties complying with specific standards.The result proves that a minimum reduction rate of 1.89 is available in producing 140 mm thick steel plate with excellent through thickness properties.