In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg...In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg·L-1 F-, and interfacial contact resistance was measured after corrosion tests. The experimental results show that the passive current density lowers with decreasing the concentration of H2SO4. The interfacial contact resistance between carbon paper and passive film formed in the simulated PEMFC environment is higher than the goal of bipolar plate for PEMFC. Surface conductivity should be further reduced by surface modification.展开更多
Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure...Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure will diminish through certain annealing process,while the cracks formed from fly-line microstructure will remain.Therefore,fly-line microstructure can be considered as a plastic deformation microstructure and crack source s meanwhile its formation is considered as a special plastic deformation mechanism of metal under explosive load.展开更多
Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of ...Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temp...Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temperature start-up,high energy density,and low noise.As one of the core components,the bipolar plates(BPs)play an important role in the PEMFC stack.Traditional graphite BPs and composite BPs have been criticized for their shortcomings such as low strength,high brittleness,and high processing cost.In contrast,stainless steel BPs(SSBPs)have recently attracted much attention of domestic and foreign researchers because of their excellent comprehensive performance,low cost,and diverse options for automobile applications.However,the SSBPs are prone to corrosion and passivation in the PEMFC working environment,which lead to reduced output power or premature failure.This review is aimed to summarize the corrosion and passivation mechanisms,characterizations and evaluation,and the surface modification technologies in the current SSBPs research.The non-coating and coating technical routes of SSBPs are demonstrated,such as substrate component regulation,thermal nitriding,electroplating,ion plating,chemical vapor deposition,and physical vapor deposition,etc.Alternative coating materials for SSBPs are metal coatings,metal nitride coatings,conductive polymer coatings,and polymer/carbon coatings,etc.Both the surface modification technologies can solve the corrosion resistance problem of stainless steel without affecting the contact resistance,however still facing restraints such as long-time stability,feasibility of low-cost,and mass production process.This paper is believed to enrich the knowledge of high-performance and long-life BPs applied for PEMFC automobiles.展开更多
Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PE...Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PEMFC environment was investigated. It was showed that the plating film was distributed on the surface of 316 stainless steel like isolated islands with height less than 50 nm. The XPS, XRD results showed that a smooth and strong chemical inert film of Nb O and Nb2O5 was formed on the surface of 316 stainless steel. In simulated cathodic condition, the corrosion potential of Nb coated stainless steel was improved by 244 m V, whilst in an anodic condition, it was improved by 105 m V. The current densities for the coated 316 stainless steel were decreased to 2.479 4 μA·cm-2 from 14.810 μA·cm-2 at-0.1 V and to 0.576 μA·cm-2 from 13.417 μA/·cm-2 at 0.6 V, respectively. It was implied that the niobium coating effectively decreased the corrosion rate. The results of the electrochemical tests indicated that the corrosion resistance of stainless steel was greatly improved after coated with niobium.展开更多
Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thi...Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.展开更多
Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials a...Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.展开更多
The 2205 duplex stainless + DH36 clad steel plate was welded by gas metal arc welding(GMAW), and the welding performance of the clad steel plate was investigated. The results show that the adaptability of the weldi...The 2205 duplex stainless + DH36 clad steel plate was welded by gas metal arc welding(GMAW), and the welding performance of the clad steel plate was investigated. The results show that the adaptability of the welding procedure for the base metal of carbon steel, the transition layer, and the cladding material is excellent. The test results indicate that the phase proportion and component dilution of the GMAW-welded joints of clad steel plate can be effectively controlled to yield joints with good mechanical properties and corrosion resistance.展开更多
Duplex stainless steel clad plate exhibits good performance and is relatively inexpensive,however,some difficulties must be overcome when welding different materials. In this study,submerged arc welding( SAW) was us...Duplex stainless steel clad plate exhibits good performance and is relatively inexpensive,however,some difficulties must be overcome when welding different materials. In this study,submerged arc welding( SAW) was used to weld Baosteel ship clad plates( 2205 + DH36),and the performance of the welded joints was tested. The results indicate that the mechanical properties and the corrosion resistance of the welded joints meet the required specifications. The distribution of the main anti-corrosive elements and the phase ratio of the welded joint are analyzed,thereby indicating excellent uniformity and confirming that the welded joint is corrosion resistant.展开更多
Types of bimetal clad plate, manufacturing methods, and their fields of application were summarized. In particular,key aspects of the welding of clad-rolled stainless steel were described, including the weldability of...Types of bimetal clad plate, manufacturing methods, and their fields of application were summarized. In particular,key aspects of the welding of clad-rolled stainless steel were described, including the weldability of the base and clad metals, design criteria for the transition layer, the selection of the type of welding process and consumables used, types of blanking and welding bevels, preparation and assembly prior to welding, welding procedure requirements, post-weld cleaning and heat treatment, and welding quality inspection. This paper will serve as a reference for the welding technology used in future consumer applications in related fields.展开更多
In this paper, the cross sectional microstructure and crystal structure of ion plated multi layer films of stainless steel (1Cr18Ni9Ti ) were studied by cross sectional transmission electron microscopy (XTEM). The re...In this paper, the cross sectional microstructure and crystal structure of ion plated multi layer films of stainless steel (1Cr18Ni9Ti ) were studied by cross sectional transmission electron microscopy (XTEM). The results show that ion plated stainless steel multi layer films are fine grained double phase steel films of austenites and ferrites.Cross section film growing microstructures can be divided into three zones: fine equiaxed crystals, fine columnar crystals and coarse columnar crystals. Interfaces in multi layer films can promote fine grained growing and interrupt columnar grained growing,and improve properties of film materials.展开更多
In order to guide the explosive welding experiment of titanium-stainless steel,Three-dimensional numerical simulation of explosive welding,which select TA1 as flyer plate and 304 stainless steel as base plate,is carri...In order to guide the explosive welding experiment of titanium-stainless steel,Three-dimensional numerical simulation of explosive welding,which select TA1 as flyer plate and 304 stainless steel as base plate,is carried out by using the LS-DYNA software and SPH-FEM coupling algorithm in the present study.The explosive welding window is calculated and established.It is found that the numerical simulation results are in good agreement with the experimental results.The displacement,velocity and pressure-time curves of characteristic elements show that the quality of explosive welding composites is superior.It is proved that SPH-FEM coupling algorithm is effective for explosive welding of TA1/304 stainless steel and can effectively guide the selection of explosive welding parameters.展开更多
The non-vacuum roll bonding method of nickel plating on the base materials is put forward in accordance with the primary problems existed in the roll bonding of stainless/carbon steel. After nickel plating test on the...The non-vacuum roll bonding method of nickel plating on the base materials is put forward in accordance with the primary problems existed in the roll bonding of stainless/carbon steel. After nickel plating test on the base materials, the microstructure of nickel cladding is observed by scanning electron microscopy (SEM) at high, and room temperature, and the results show that the nickel cladding on base material can be protected from oxidation in the high temperature. Non-vacuum roll bonding tests of nickel plating on base materials are done by the roll bonding equipment, and the roll bonding plates of stainless/carbon steel are obtained. The microstructure and the elements distribution of non-vacuum roll bonding interface are analyzed by optical microscope (OM) and SEM. The results reflect that the nickel plating layer and the base materials bond well.展开更多
文摘In order to use stainless steel as bipolar plate for PEMFC, electrochemical behavior of a high Cr and Ni austenitic stainless steel was studied in the solutions containing different concentration of H2SO4 and 2 mg·L-1 F-, and interfacial contact resistance was measured after corrosion tests. The experimental results show that the passive current density lowers with decreasing the concentration of H2SO4. The interfacial contact resistance between carbon paper and passive film formed in the simulated PEMFC environment is higher than the goal of bipolar plate for PEMFC. Surface conductivity should be further reduced by surface modification.
文摘Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure will diminish through certain annealing process,while the cracks formed from fly-line microstructure will remain.Therefore,fly-line microstructure can be considered as a plastic deformation microstructure and crack source s meanwhile its formation is considered as a special plastic deformation mechanism of metal under explosive load.
基金financially supported by the National Basic Research Program of China (973 Program) (no. 2012CB215500)the National Key Technology Research and Development Program of China (no. 2015BAG06B00)+1 种基金Major Program of the National Natural Science Foundation of China (no. 61433013)National Natural Science Foundation of China (no. 21206012)
文摘Arc ion plating (AIP) is applied to form Ti/(Ti,Cr)N/CrN multilayer coating on the surface of 316L stainless steel (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). The characterizations of the coating are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Interfacial contact resistance (ICR) between the coated sample and carbon paper is 4.9 m Omega cm(2) under 150 N/cm(2), which is much lower than that of the SS316L substrate. Potentiodynamic and potentiostatic tests are performed in the simulated PEMFC working conditions to investigate the corrosion behaviors of the coated sample. Superior anticorrosion performance is observed for the coated sample, whose corrosion current density is 0.12 mu A/cm(2). Surface morphology results after corrosion tests indicate that the substrate is well protected by the multilayer coating. Performances of the single cell with the multilayer coated SS316L bipolar plate are improved significantly compared with that of the cell with the uncoated SS316L bipolar plate, presenting a great potential for PEMFC application. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by the National Natural Science Foundation of China(No.51704017)the National Key Research and Development plan of China(No.2018YFB1502403)the Communication Program for Young Scientist in USTB(No.QNXM20210010)。
文摘Proton exchange membrane fuel cell(PEMFC)powered automobiles have been recognized to be the ultimate solution to replace traditional fuel automobiles because of their advantages of PEMFCs such as no pollution,low temperature start-up,high energy density,and low noise.As one of the core components,the bipolar plates(BPs)play an important role in the PEMFC stack.Traditional graphite BPs and composite BPs have been criticized for their shortcomings such as low strength,high brittleness,and high processing cost.In contrast,stainless steel BPs(SSBPs)have recently attracted much attention of domestic and foreign researchers because of their excellent comprehensive performance,low cost,and diverse options for automobile applications.However,the SSBPs are prone to corrosion and passivation in the PEMFC working environment,which lead to reduced output power or premature failure.This review is aimed to summarize the corrosion and passivation mechanisms,characterizations and evaluation,and the surface modification technologies in the current SSBPs research.The non-coating and coating technical routes of SSBPs are demonstrated,such as substrate component regulation,thermal nitriding,electroplating,ion plating,chemical vapor deposition,and physical vapor deposition,etc.Alternative coating materials for SSBPs are metal coatings,metal nitride coatings,conductive polymer coatings,and polymer/carbon coatings,etc.Both the surface modification technologies can solve the corrosion resistance problem of stainless steel without affecting the contact resistance,however still facing restraints such as long-time stability,feasibility of low-cost,and mass production process.This paper is believed to enrich the knowledge of high-performance and long-life BPs applied for PEMFC automobiles.
基金Funded by the National Natural Science Foundation of China(No.21276036)the Fundamental Research Funds for the Central Universities(No.3132014323)
文摘Niobium was electrodeposited on 316 stainless steel bipolar plates of a fuel cell in water and air-stable choline chloride based ionic liquids. The electrochemical corruption property of bipolar plates in simulated PEMFC environment was investigated. It was showed that the plating film was distributed on the surface of 316 stainless steel like isolated islands with height less than 50 nm. The XPS, XRD results showed that a smooth and strong chemical inert film of Nb O and Nb2O5 was formed on the surface of 316 stainless steel. In simulated cathodic condition, the corrosion potential of Nb coated stainless steel was improved by 244 m V, whilst in an anodic condition, it was improved by 105 m V. The current densities for the coated 316 stainless steel were decreased to 2.479 4 μA·cm-2 from 14.810 μA·cm-2 at-0.1 V and to 0.576 μA·cm-2 from 13.417 μA/·cm-2 at 0.6 V, respectively. It was implied that the niobium coating effectively decreased the corrosion rate. The results of the electrochemical tests indicated that the corrosion resistance of stainless steel was greatly improved after coated with niobium.
基金financially supported by the National Natural Science Foundation of China(No.21106012)the Educational Department Foundation of Liaoning Province of China(NO.L2014180)
文摘Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.
基金financial support provided by UGC-DAE-CSR (CSR-KN/CRS-04/201213/738) through fellowship
文摘Titanium tube and stainless steel tube plate were welded by an innovative friction welding of tube to tube plate using an external tool (FWTPET). Copper was used as an interlayer for joining the dissimilar materials and also to minimize the effect of intermetallics formed at the joint interface. The process parameters that govern FWTPET process are plunge rate, rotational speed, plunge depth, axial load and flash trap profile. Among them, the flash trap profile of the tube has a significant influence on the joint integrity. Various flash trap profiles like vertical slots, holes, zig-zag holes, and petals were made on the titanium tube welded to the stainless steel tube plate. Macroscopic and microscopic studies reveal defect-free joints. The presence of copper interlayer and intermetallics was evident from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies. The microhardness survey was presented across and along the interface. A novel test procedure called “plunge shear test” was developed to evaluate the joint properties of the welded joints. The highest shear fracture load of 31.58 kN was observed on the sample having petals as flash trap profile. The sheared surfaces were further characterized using SEM for fractography.
文摘The 2205 duplex stainless + DH36 clad steel plate was welded by gas metal arc welding(GMAW), and the welding performance of the clad steel plate was investigated. The results show that the adaptability of the welding procedure for the base metal of carbon steel, the transition layer, and the cladding material is excellent. The test results indicate that the phase proportion and component dilution of the GMAW-welded joints of clad steel plate can be effectively controlled to yield joints with good mechanical properties and corrosion resistance.
文摘Duplex stainless steel clad plate exhibits good performance and is relatively inexpensive,however,some difficulties must be overcome when welding different materials. In this study,submerged arc welding( SAW) was used to weld Baosteel ship clad plates( 2205 + DH36),and the performance of the welded joints was tested. The results indicate that the mechanical properties and the corrosion resistance of the welded joints meet the required specifications. The distribution of the main anti-corrosive elements and the phase ratio of the welded joint are analyzed,thereby indicating excellent uniformity and confirming that the welded joint is corrosion resistant.
文摘Types of bimetal clad plate, manufacturing methods, and their fields of application were summarized. In particular,key aspects of the welding of clad-rolled stainless steel were described, including the weldability of the base and clad metals, design criteria for the transition layer, the selection of the type of welding process and consumables used, types of blanking and welding bevels, preparation and assembly prior to welding, welding procedure requirements, post-weld cleaning and heat treatment, and welding quality inspection. This paper will serve as a reference for the welding technology used in future consumer applications in related fields.
文摘In this paper, the cross sectional microstructure and crystal structure of ion plated multi layer films of stainless steel (1Cr18Ni9Ti ) were studied by cross sectional transmission electron microscopy (XTEM). The results show that ion plated stainless steel multi layer films are fine grained double phase steel films of austenites and ferrites.Cross section film growing microstructures can be divided into three zones: fine equiaxed crystals, fine columnar crystals and coarse columnar crystals. Interfaces in multi layer films can promote fine grained growing and interrupt columnar grained growing,and improve properties of film materials.
基金Project was supported by the National Natural Science Foundation of China(Grant No.11902003).
文摘In order to guide the explosive welding experiment of titanium-stainless steel,Three-dimensional numerical simulation of explosive welding,which select TA1 as flyer plate and 304 stainless steel as base plate,is carried out by using the LS-DYNA software and SPH-FEM coupling algorithm in the present study.The explosive welding window is calculated and established.It is found that the numerical simulation results are in good agreement with the experimental results.The displacement,velocity and pressure-time curves of characteristic elements show that the quality of explosive welding composites is superior.It is proved that SPH-FEM coupling algorithm is effective for explosive welding of TA1/304 stainless steel and can effectively guide the selection of explosive welding parameters.
文摘The non-vacuum roll bonding method of nickel plating on the base materials is put forward in accordance with the primary problems existed in the roll bonding of stainless/carbon steel. After nickel plating test on the base materials, the microstructure of nickel cladding is observed by scanning electron microscopy (SEM) at high, and room temperature, and the results show that the nickel cladding on base material can be protected from oxidation in the high temperature. Non-vacuum roll bonding tests of nickel plating on base materials are done by the roll bonding equipment, and the roll bonding plates of stainless/carbon steel are obtained. The microstructure and the elements distribution of non-vacuum roll bonding interface are analyzed by optical microscope (OM) and SEM. The results reflect that the nickel plating layer and the base materials bond well.