The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-d...The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency.The major influencing ATIG welding parameters,such as electrode gap,travel speed,current and voltage,that aid in controlling the aspect ratio of DSS joints,must be optimized to obtain desirable aspect ratio for DSS joints.Hence in this study,the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array(OA)experimental design and other statistical tools such as Analysis of Variance(ANOVA) and Pooled ANOVA techniques.The optimum process parameters are found to be 1 mm electrode gap,130 mm/min travel speed,140 A current and 12 V voltage.The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.展开更多
SAF2507 plates ( 12 mm thickness ) were welded using shield metal arc welding (SMAW) process with E2594 electrode. The microstructure, o-phase, and impact fraetograph of the welded joints were analyzed using optic...SAF2507 plates ( 12 mm thickness ) were welded using shield metal arc welding (SMAW) process with E2594 electrode. The microstructure, o-phase, and impact fraetograph of the welded joints were analyzed using optical microscope and scanning electron mieroseope. The results show that the fusion zone consists of ferrite, chromium nitride, and secondary aastenite precipitation when welding is performed at low heat input (0. 5 kJ/mm). However, the increase in heat input causes precipitation of brittle o" phase at the y/c~ interface in weld metal and heat-affected zone, as well as a brittle fracture along the grain boundary. Heat input in the range of O. 5 kJ/mm to 1.5 kJ/mm is suitable for joining SAF2507 plates.展开更多
Double-sided arc welding with a single power source can effectively increase the weld penetration, diminish distortion, improve welding speed and save energy. Compared to conventional arc welding processes, double-sid...Double-sided arc welding with a single power source can effectively increase the weld penetration, diminish distortion, improve welding speed and save energy. Compared to conventional arc welding processes, double-sided arc welding can generate a penetrating electromaguetic field to help to form fine dendritic microstrueture in the weld due to the symmetry of heating. Type 1Cr1SNi9Ti aastenitic stainless steel was bead-on-plate welded with double-sided arc welding and conventional plasma arc welding processes, respectively, and microstructure in the weld, heat-affected zone and base metal were examined. After analyzing the black carbon-enriched band in the weld during plasma arc welding with electron probe microanalyzer ( EPMA ) and X-ray diffraction (XRD) technology, it was found that the black band was shaped from the aggregation of ferrite in the fasion boundary. Hardness measurement showed that this black band does not apparently affect the microhardncss distribution in the weld.展开更多
This study examines mechanisms for providing nuclei to equiaxed grains in the welds of pure ferritic stainless steel (FSS). The addition of the alloy element Ti to pure FSS 439 causes the precipitation of TiN, which...This study examines mechanisms for providing nuclei to equiaxed grains in the welds of pure ferritic stainless steel (FSS). The addition of the alloy element Ti to pure FSS 439 causes the precipitation of TiN, which can benefit the columnar-to-equiaxed transition (CET) of gas tungsten arc welding (GTAW). Meanwhile,the initial morphology of the precipitates, the concentration multiplications of Ti, N, etc. of FSS 439 should be controlled to induce the formation of CET during the short welding process.展开更多
In the harsh service environment of high temperature and intense neutron irradiation in water-cooled nuclear reactors,the austenitic stainless steel weld overlay cladding on the inner surface of the reactor pressure v...In the harsh service environment of high temperature and intense neutron irradiation in water-cooled nuclear reactors,the austenitic stainless steel weld overlay cladding on the inner surface of the reactor pressure vessel suffers from thermal aging and irradiation damage simultaneously,which can induce microstructural evolution and hardening of the material.Since it is quite difficult to achieve this simul-taneous process out of the pile,two kinds of combined experiments,i.e.,post-irradiation thermal aging and post-aging irradiation were performed on 308 L stainless steel weld metals in this work.The interactive effect of thermal aging and proton irradiation on microstructural evolution and hardening ofδ-ferrite in 308 L weld metal was investigated by combining atom probe tomography,transmission elec-tron microscopy and nanoindentation tests.The results revealed that thermal aging could eliminate the dislocation loops induced by irradiation and affect the phase transition process by accelerating spinodal decomposition and G-phase precipitation,thus enhancing hardening of irradiatedδ-ferrite.For the effect of irradiation on the microstructure and hardening of thermally agedδ-ferrite,however,intensive collision cascades can intensify G-phase precipitation and dislocation loop formation but decrease spinodal decomposition,leading to a limited effect on hardening of thermally agedδ-ferrite.Furthermore,the interaction of thermal aging and irradiation can promote G-phase precipitation.Meanwhile,the interaction can causeδ-ferrite hardening,which is mainly influenced by spinodal decomposition,followed by G-phase and dislocation loops,where spinodal decomposition and G-phase cause hardening by inducing strain fields.展开更多
The high Si-bearing 15Cr-9Ni-Nb metastable austenitic stainless steel weld metal was prepared via gas tungsten arc welding and then processed by stabilized heat treatment(SHT)at 850℃ for 3 h.The effects of 550℃ agin...The high Si-bearing 15Cr-9Ni-Nb metastable austenitic stainless steel weld metal was prepared via gas tungsten arc welding and then processed by stabilized heat treatment(SHT)at 850℃ for 3 h.The effects of 550℃ aging on the α'-martensitic transformation of the as-welded and the SHT weld metals were investigated.The results showed that the weld metal had poor thermal stability of austenite.The precipitation of NbC during the 850℃ SHT made the thermal stability of the local matrix decrease and led to the formation of a large amount of C-depleted α'-martensite.The precipitation of coarse σ-phase at the δ-ferrite led to the Cr-depleted zone and the formation of Cr-depleted α'-martensite at the early stage of 550℃ aging.The homogenized diffusion of C and Cr in the matrix during 550℃ aging led to the restoration of austenitic thermal stability and the decrease of α'-martensite content.The C-depleted α'-martensite content in the SHT weld metal decreased rapidly at the early stage of aging due to the fast diffusion rate of the C atom in the matrix,while the Cr-depleted α'-martensite decreased at the later stage of aging due to the decreased diffusion rate of the Cr.展开更多
The proton-irradiated 308L stainless steel weld metal was strained by using constant extension rate tensile testing in simulated PWR primary water, and its deformation microstructures and irradiation assisted stress c...The proton-irradiated 308L stainless steel weld metal was strained by using constant extension rate tensile testing in simulated PWR primary water, and its deformation microstructures and irradiation assisted stress corrosion cracking(IASCC) behavior were investigated. The results suggest that the irradiation significantly increases the SCC susceptibility of 308L weld metal and causes various deformation microstructures including lathy faulted planes, dislocation channels and deformation twins in austenite and atomic plane rotation in δ-ferrite. The propagation of intergranular IASCC cracks is closely related to the location of the crack tip. For the crack tip in the specimen matrix interior, localized deformation is likely the key factor responsible for the crack growth. For the crack tip close to the specimen surface, however, localized corrosion along the grain boundary rather than the localized deformation appears to dominate the crack propagation. Unlike the intergranular cracks, the IASCC cracks along the δ-ferrite/austenite phase boundary can initiate either by crack initiation at the phase boundary or by crack propagation from the grain boundary. In both cases, the cracked phase boundaries contain a large number of carbides and are severely corroded, but no deformation microstructures are observed, which implies that the localized corrosion may play an important role in the IASCC along the phase boundary. In addition, δ-ferrite can retard the IASCC crack propagation along the grain boundary, which is probably related to the reduction of localized deformation by δ-ferrite.展开更多
The corrosion of unaged and 7000-h thermally aged 308 L stainless steel weld metals in simulated PWR primary water under aerated and deaerated conditions was investigated,involving the corrosion of austenite,δ-ferrit...The corrosion of unaged and 7000-h thermally aged 308 L stainless steel weld metals in simulated PWR primary water under aerated and deaerated conditions was investigated,involving the corrosion of austenite,δ-ferrite andδ-ferrite/austenite phase boundary.The results revealed that thermal ageing for 7000 h had a limited effect on the corrosion behavior of 308 L weld metal as it only increased the inner oxide thickness ofδ-ferrite slightly under the deaerated condition.No obvious corrosion enhancement of 308 L weld metal under the aerated condition was found compared to the deaerated condition regardless of the thermal ageing.Nevertheless,Cr-enrichment on the surface of oxide particles,dissolved regions at the metal/oxide interface and localized corrosion along theδ-ferrite/austenite phase boundary occurred under the aerated condition.展开更多
One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TI...One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual sWains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.展开更多
According to the characteristics of welding process, this paper divided the welding joint of a weldment into three zones: the liquid zone in the molten pool, the solid liquid co existing zone and the solid zone. In ...According to the characteristics of welding process, this paper divided the welding joint of a weldment into three zones: the liquid zone in the molten pool, the solid liquid co existing zone and the solid zone. In order to develop the stress/strain numerical model, the mechanical behaviors of the three zones were analyzed in detail. Moreover, Based on the solid fractions during solidification process and loading unloading deforming curves of stainless steel SUS310, this paper also studied the effects of deformation of molten pool, the rheologic properties and solidification shrinkage on stress/strain evaluating processes. Finally, the influence of the deformation in the molten pool was eliminated by element rebirth method. Furthermore, the algorithm of the thermal stress/strain for the solid metal formulated on the basis of the incremental thermo elastoplastic constitutive theory. As a result, a numerical simulation model of stress/strain distributions for welding solidification crack was developed.展开更多
Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of ...Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of tensile tests show that a significant improvement on mechanical properties of the butt joint is obtained using the modified flux. Moreover, obvious differences on microstructures of the interfaces were observed with Ni addition, that two intermetallic compound (IMC) layers at the interface change to one layer and the IMC thickness also decreases. Finally, effect mechanism of Ni was analyzed and discussed. Ni addition leads to an enrichment of element Si at the brazing interface, and furthermore suppresses the formation of intermetaUic compound. The reduction of IMC thickness is the main reason for the improvement of joint properties.展开更多
Accelerated corrosion test of stainless steel with weld was carried out to investigate the corrosion behavior under the wetdry cyclic condition in the atmosphere containing Cl^-. In the surface morphology, corrosion p...Accelerated corrosion test of stainless steel with weld was carried out to investigate the corrosion behavior under the wetdry cyclic condition in the atmosphere containing Cl^-. In the surface morphology, corrosion products were analyzed by metallographic observation, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the damage to stainless steel with weld in the atmosphere containing Cl^- is due to localized corrosion, especially pitting and galvanic corrosion, Weld acts as the anode, whereas matrix acts as the cathode in the corrosion process. The pitting corrosion, including the nucleation and growth of a stable pit, is promoted by the presence of wet-dry cycles, especially during the drying stage. Pits centralizing in weld are found to be grouped together like colonies, with a number of smaller pits surrounding a larger pit. The composition of the corrosion products is Fe2O3, Cr2O3, Fe3O4, NiCrO4, etc.展开更多
An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish ...An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish the nugget from the corona bond. The 2D C-scan images produced by ultrasonic C scan which contribute to quantitatively calculate the nugget diameter for the computer are further analyzed. The spot welding nugget diameter can be automatically obtained by image enhancement, edge detection and equivalent diameter algorithm procedure. The ultrasonic detection values in this paper show good agreement with the metallographic measured values. The mean value of normal distribution curve is 0.006 67, and the standard deviation is 0.087 11. Ultrasonic C-scan test based on wavelet packet signal analysis is of high accuracy and stability.展开更多
The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The results...The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The resultsshowed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved thepenetration more effectively at low power than that at high power. The uniform design was adopted to arrange theformula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to2.23 times as large as that without flux, including 50% ZrO2, 12.09% CaCO3, 10.43% CaO and 27.48% MgO. Throughthe high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the penetrationcapability.展开更多
The fracture characteristics of the joint were analyzed by means of scanning electron microscope. Microstructures of the joint were examined by means of optical microscope, SEM and an image analyzer. The results show ...The fracture characteristics of the joint were analyzed by means of scanning electron microscope. Microstructures of the joint were examined by means of optical microscope, SEM and an image analyzer. The results show that the tensile strength of the inhomogeneous joint of TiNi shape memory alloy and stainless steel is lower than that of the homogeneous joint and a plastic field appears in the heat affected zone on the side of TiNi shape memory alloy. Because TiNi shape memory alloy and stainless steel melted, a brittle as-cast structure was formed in the weld. The tensile strength and the shape memory effect of the inhomogeneous joint are strongly influenced by the changes of composition and structure of the joint. Measures should be taken to reduce the base metal melting and prevent the weld metal from the invasion by O for improving the properties of the TiNi shape memory alloy and stainless steel inhomogeneous joint.展开更多
Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means...Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means of scanning electron microscope ( SEM). Microstructures of the joint were examined by means of optical microscope and SEM. The results showed that the teusile strength of the inhomogeneous joint ( TiNi-SS joint) was low and the joint was brittle. Because TiNi SMA and SS melted, a brittle as-cast structure and compound were formed in the weld. The tensile strength and the shape memory effect (SME) of TiNi-SS joint were strongly influenced by the changes of composition and structure of the weld. Measures should be taken to prevent defects from forming and extruding excessive molten metal in the weld for improving the properties of TiNi-SS joint.展开更多
In this paper,the performance characteristics of ASTM A790 S31803 and ASTM A182 F51 duplex stainless steel were introduced,and the weldabilities were analyzed. The welding repair procedures of thick wall duplex stainl...In this paper,the performance characteristics of ASTM A790 S31803 and ASTM A182 F51 duplex stainless steel were introduced,and the weldabilities were analyzed. The welding repair procedures of thick wall duplex stainless steel were developed by welding procedure qualification. Research shows that the repair welding has less effect on mechanical properties of welded joint, and great influence on phase proportions and pitting corrosion resistance. The test results meet the requirements of project specifications. The repair welding procedure can be used in project,and only one time repair shall be used.展开更多
To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper...To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by en- ergy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corro- sion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG weld- ing. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaC1 solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints pro- duced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS $31803 duplex stainless steel and low alloy steel in practical application.展开更多
This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 2...This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.展开更多
The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material.This study investigates the corrosion resistance of UNS S32750 and ...The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material.This study investigates the corrosion resistance of UNS S32750 and S32760 superduplex stainless steels(SDSSs)joined by friction stir welding,employing cyclic polarization,Mott–Schottky,and microscopy techniques for analysis.The microscopy images indicated the presence of a deleterious intermetallic phase after electrolytic etching of S32760,as well as decreased corrosion resistance.The presence of molybdenum in the steels promoted better passive behavior at low pH.The Mott–Schottky curves revealed p-n heterojunction behavior of the passive oxide.Images acquired after the polarization test by scanning electron microscopy showed higher passivation propensity with increases of temperature and pH.展开更多
文摘The activated TIG(ATIG) welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention.The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency.The major influencing ATIG welding parameters,such as electrode gap,travel speed,current and voltage,that aid in controlling the aspect ratio of DSS joints,must be optimized to obtain desirable aspect ratio for DSS joints.Hence in this study,the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array(OA)experimental design and other statistical tools such as Analysis of Variance(ANOVA) and Pooled ANOVA techniques.The optimum process parameters are found to be 1 mm electrode gap,130 mm/min travel speed,140 A current and 12 V voltage.The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.
文摘SAF2507 plates ( 12 mm thickness ) were welded using shield metal arc welding (SMAW) process with E2594 electrode. The microstructure, o-phase, and impact fraetograph of the welded joints were analyzed using optical microscope and scanning electron mieroseope. The results show that the fusion zone consists of ferrite, chromium nitride, and secondary aastenite precipitation when welding is performed at low heat input (0. 5 kJ/mm). However, the increase in heat input causes precipitation of brittle o" phase at the y/c~ interface in weld metal and heat-affected zone, as well as a brittle fracture along the grain boundary. Heat input in the range of O. 5 kJ/mm to 1.5 kJ/mm is suitable for joining SAF2507 plates.
文摘Double-sided arc welding with a single power source can effectively increase the weld penetration, diminish distortion, improve welding speed and save energy. Compared to conventional arc welding processes, double-sided arc welding can generate a penetrating electromaguetic field to help to form fine dendritic microstrueture in the weld due to the symmetry of heating. Type 1Cr1SNi9Ti aastenitic stainless steel was bead-on-plate welded with double-sided arc welding and conventional plasma arc welding processes, respectively, and microstructure in the weld, heat-affected zone and base metal were examined. After analyzing the black carbon-enriched band in the weld during plasma arc welding with electron probe microanalyzer ( EPMA ) and X-ray diffraction (XRD) technology, it was found that the black band was shaped from the aggregation of ferrite in the fasion boundary. Hardness measurement showed that this black band does not apparently affect the microhardncss distribution in the weld.
文摘This study examines mechanisms for providing nuclei to equiaxed grains in the welds of pure ferritic stainless steel (FSS). The addition of the alloy element Ti to pure FSS 439 causes the precipitation of TiN, which can benefit the columnar-to-equiaxed transition (CET) of gas tungsten arc welding (GTAW). Meanwhile,the initial morphology of the precipitates, the concentration multiplications of Ti, N, etc. of FSS 439 should be controlled to induce the formation of CET during the short welding process.
基金supported by the National Natural Science Foundation of China(No.52071018).
文摘In the harsh service environment of high temperature and intense neutron irradiation in water-cooled nuclear reactors,the austenitic stainless steel weld overlay cladding on the inner surface of the reactor pressure vessel suffers from thermal aging and irradiation damage simultaneously,which can induce microstructural evolution and hardening of the material.Since it is quite difficult to achieve this simul-taneous process out of the pile,two kinds of combined experiments,i.e.,post-irradiation thermal aging and post-aging irradiation were performed on 308 L stainless steel weld metals in this work.The interactive effect of thermal aging and proton irradiation on microstructural evolution and hardening ofδ-ferrite in 308 L weld metal was investigated by combining atom probe tomography,transmission elec-tron microscopy and nanoindentation tests.The results revealed that thermal aging could eliminate the dislocation loops induced by irradiation and affect the phase transition process by accelerating spinodal decomposition and G-phase precipitation,thus enhancing hardening of irradiatedδ-ferrite.For the effect of irradiation on the microstructure and hardening of thermally agedδ-ferrite,however,intensive collision cascades can intensify G-phase precipitation and dislocation loop formation but decrease spinodal decomposition,leading to a limited effect on hardening of thermally agedδ-ferrite.Furthermore,the interaction of thermal aging and irradiation can promote G-phase precipitation.Meanwhile,the interaction can causeδ-ferrite hardening,which is mainly influenced by spinodal decomposition,followed by G-phase and dislocation loops,where spinodal decomposition and G-phase cause hardening by inducing strain fields.
基金supported by the National Key Research and Development Program of China(2018YFA0702902)the Innovation Project of Shenyang National Laboratory for Materials Science(SYNL-2022)the China Institute of Atomic Energy(E141L803J1).
文摘The high Si-bearing 15Cr-9Ni-Nb metastable austenitic stainless steel weld metal was prepared via gas tungsten arc welding and then processed by stabilized heat treatment(SHT)at 850℃ for 3 h.The effects of 550℃ aging on the α'-martensitic transformation of the as-welded and the SHT weld metals were investigated.The results showed that the weld metal had poor thermal stability of austenite.The precipitation of NbC during the 850℃ SHT made the thermal stability of the local matrix decrease and led to the formation of a large amount of C-depleted α'-martensite.The precipitation of coarse σ-phase at the δ-ferrite led to the Cr-depleted zone and the formation of Cr-depleted α'-martensite at the early stage of 550℃ aging.The homogenized diffusion of C and Cr in the matrix during 550℃ aging led to the restoration of austenitic thermal stability and the decrease of α'-martensite content.The C-depleted α'-martensite content in the SHT weld metal decreased rapidly at the early stage of aging due to the fast diffusion rate of the C atom in the matrix,while the Cr-depleted α'-martensite decreased at the later stage of aging due to the decreased diffusion rate of the Cr.
基金financially supported by the Jiangsu Natural Science Foundation (No. BK20191178)the National Natural Science Foundation of China (No. 52071018)the China Postdoctoral Science Foundation (No. 2021M692018)。
文摘The proton-irradiated 308L stainless steel weld metal was strained by using constant extension rate tensile testing in simulated PWR primary water, and its deformation microstructures and irradiation assisted stress corrosion cracking(IASCC) behavior were investigated. The results suggest that the irradiation significantly increases the SCC susceptibility of 308L weld metal and causes various deformation microstructures including lathy faulted planes, dislocation channels and deformation twins in austenite and atomic plane rotation in δ-ferrite. The propagation of intergranular IASCC cracks is closely related to the location of the crack tip. For the crack tip in the specimen matrix interior, localized deformation is likely the key factor responsible for the crack growth. For the crack tip close to the specimen surface, however, localized corrosion along the grain boundary rather than the localized deformation appears to dominate the crack propagation. Unlike the intergranular cracks, the IASCC cracks along the δ-ferrite/austenite phase boundary can initiate either by crack initiation at the phase boundary or by crack propagation from the grain boundary. In both cases, the cracked phase boundaries contain a large number of carbides and are severely corroded, but no deformation microstructures are observed, which implies that the localized corrosion may play an important role in the IASCC along the phase boundary. In addition, δ-ferrite can retard the IASCC crack propagation along the grain boundary, which is probably related to the reduction of localized deformation by δ-ferrite.
基金financially supported by the National Natural Science Foundation of China(No.52071018)the Gusu Innovation Leader Talents Program(ZXL2017112)。
文摘The corrosion of unaged and 7000-h thermally aged 308 L stainless steel weld metals in simulated PWR primary water under aerated and deaerated conditions was investigated,involving the corrosion of austenite,δ-ferrite andδ-ferrite/austenite phase boundary.The results revealed that thermal ageing for 7000 h had a limited effect on the corrosion behavior of 308 L weld metal as it only increased the inner oxide thickness ofδ-ferrite slightly under the deaerated condition.No obvious corrosion enhancement of 308 L weld metal under the aerated condition was found compared to the deaerated condition regardless of the thermal ageing.Nevertheless,Cr-enrichment on the surface of oxide particles,dissolved regions at the metal/oxide interface and localized corrosion along theδ-ferrite/austenite phase boundary occurred under the aerated condition.
文摘One of the main problems during the welding of ferritic stainless steels is severe grain growth within the heat-affected zone (HAZ) In the present study, the microstmctural characteristics of tungsten inert gas (TIG) welded AISI409 ferritic stainless steel were investigated by electron backscattered diffraction (EBSD), and the effects of welding parameters on the grain size, local misorientation, and low-angle grain boundaries were studied. A 3-D finite element model (FEM) was developed to predict the effects of welding parameters on the holding time of the HAZ above the critical temperature of grain growth. It is found that the base metal is not fully recrystallized. During the welding, complete recrystallization is followed by severe grain growth. A decrease in the number of low-angle grain boundaries is observed within the HAZ. FEM results show that the final state of residual sWains is caused by competition between welding plastic strains and their release by recrystallization. Still, the decisive factor for grain growth is heat input.
文摘According to the characteristics of welding process, this paper divided the welding joint of a weldment into three zones: the liquid zone in the molten pool, the solid liquid co existing zone and the solid zone. In order to develop the stress/strain numerical model, the mechanical behaviors of the three zones were analyzed in detail. Moreover, Based on the solid fractions during solidification process and loading unloading deforming curves of stainless steel SUS310, this paper also studied the effects of deformation of molten pool, the rheologic properties and solidification shrinkage on stress/strain evaluating processes. Finally, the influence of the deformation in the molten pool was eliminated by element rebirth method. Furthermore, the algorithm of the thermal stress/strain for the solid metal formulated on the basis of the incremental thermo elastoplastic constitutive theory. As a result, a numerical simulation model of stress/strain distributions for welding solidification crack was developed.
基金Acknowledgement The authors would like to appreciate the financial support from the National Natural Science Foundation of China (Grant No. 50874033).
文摘Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of tensile tests show that a significant improvement on mechanical properties of the butt joint is obtained using the modified flux. Moreover, obvious differences on microstructures of the interfaces were observed with Ni addition, that two intermetallic compound (IMC) layers at the interface change to one layer and the IMC thickness also decreases. Finally, effect mechanism of Ni was analyzed and discussed. Ni addition leads to an enrichment of element Si at the brazing interface, and furthermore suppresses the formation of intermetaUic compound. The reduction of IMC thickness is the main reason for the improvement of joint properties.
基金This work was financially supported by the National Natural Science Foundation of China (No.50601012).
文摘Accelerated corrosion test of stainless steel with weld was carried out to investigate the corrosion behavior under the wetdry cyclic condition in the atmosphere containing Cl^-. In the surface morphology, corrosion products were analyzed by metallographic observation, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the damage to stainless steel with weld in the atmosphere containing Cl^- is due to localized corrosion, especially pitting and galvanic corrosion, Weld acts as the anode, whereas matrix acts as the cathode in the corrosion process. The pitting corrosion, including the nucleation and growth of a stable pit, is promoted by the presence of wet-dry cycles, especially during the drying stage. Pits centralizing in weld are found to be grouped together like colonies, with a number of smaller pits surrounding a larger pit. The composition of the corrosion products is Fe2O3, Cr2O3, Fe3O4, NiCrO4, etc.
基金Funded by Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science & Engineering,Jilin University
文摘An ultrasonic test of spot welding for stainless steel is conducted. Based on wavelet packet decomposition, the ultrasonic echo signal has been analyzed deeply in time - frequency domain, which can easily distinguish the nugget from the corona bond. The 2D C-scan images produced by ultrasonic C scan which contribute to quantitatively calculate the nugget diameter for the computer are further analyzed. The spot welding nugget diameter can be automatically obtained by image enhancement, edge detection and equivalent diameter algorithm procedure. The ultrasonic detection values in this paper show good agreement with the metallographic measured values. The mean value of normal distribution curve is 0.006 67, and the standard deviation is 0.087 11. Ultrasonic C-scan test based on wavelet packet signal analysis is of high accuracy and stability.
基金Supported by the Research Institute,Baoshan Iron & Steel Co.,Ltd
文摘The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investigatedin this study. Some conventional oxides, halides and carbonates were applied in laser welding. The resultsshowed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved thepenetration more effectively at low power than that at high power. The uniform design was adopted to arrange theformula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to2.23 times as large as that without flux, including 50% ZrO2, 12.09% CaCO3, 10.43% CaO and 27.48% MgO. Throughthe high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the penetrationcapability.
文摘The fracture characteristics of the joint were analyzed by means of scanning electron microscope. Microstructures of the joint were examined by means of optical microscope, SEM and an image analyzer. The results show that the tensile strength of the inhomogeneous joint of TiNi shape memory alloy and stainless steel is lower than that of the homogeneous joint and a plastic field appears in the heat affected zone on the side of TiNi shape memory alloy. Because TiNi shape memory alloy and stainless steel melted, a brittle as-cast structure was formed in the weld. The tensile strength and the shape memory effect of the inhomogeneous joint are strongly influenced by the changes of composition and structure of the joint. Measures should be taken to reduce the base metal melting and prevent the weld metal from the invasion by O for improving the properties of the TiNi shape memory alloy and stainless steel inhomogeneous joint.
文摘Microstructures and properties of capacitor discharge welded (CDW) joint of TiNi shape memory alloy ( SMA ) and stainless steel (SS) were studied. The fracture characteristics of the joint were analyzed by means of scanning electron microscope ( SEM). Microstructures of the joint were examined by means of optical microscope and SEM. The results showed that the teusile strength of the inhomogeneous joint ( TiNi-SS joint) was low and the joint was brittle. Because TiNi SMA and SS melted, a brittle as-cast structure and compound were formed in the weld. The tensile strength and the shape memory effect (SME) of TiNi-SS joint were strongly influenced by the changes of composition and structure of the weld. Measures should be taken to prevent defects from forming and extruding excessive molten metal in the weld for improving the properties of TiNi-SS joint.
文摘In this paper,the performance characteristics of ASTM A790 S31803 and ASTM A182 F51 duplex stainless steel were introduced,and the weldabilities were analyzed. The welding repair procedures of thick wall duplex stainless steel were developed by welding procedure qualification. Research shows that the repair welding has less effect on mechanical properties of welded joint, and great influence on phase proportions and pitting corrosion resistance. The test results meet the requirements of project specifications. The repair welding procedure can be used in project,and only one time repair shall be used.
基金supported by the National Science and Technology Major Project of China (Grant No.2011ZX05056)
文摘To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by en- ergy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corro- sion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG weld- ing. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaC1 solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints pro- duced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS $31803 duplex stainless steel and low alloy steel in practical application.
基金the Thai Government scholarship given via Rajamangala University of Technology Krungthep (UTK), Bangkok, Thailand, for their financial support through this funded research project
文摘This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.
基金FACEPE for financial supportCNPq for financial support,Scholarships were provided by CNPqUFPE for financial support
文摘The conditions used for friction stir welding of duplex stainless steels determine the resulting mechanical and corrosion performance of the material.This study investigates the corrosion resistance of UNS S32750 and S32760 superduplex stainless steels(SDSSs)joined by friction stir welding,employing cyclic polarization,Mott–Schottky,and microscopy techniques for analysis.The microscopy images indicated the presence of a deleterious intermetallic phase after electrolytic etching of S32760,as well as decreased corrosion resistance.The presence of molybdenum in the steels promoted better passive behavior at low pH.The Mott–Schottky curves revealed p-n heterojunction behavior of the passive oxide.Images acquired after the polarization test by scanning electron microscopy showed higher passivation propensity with increases of temperature and pH.