The 2009 H1N1 influenza pandemic has attracted worldwide attention. The new virus first emerged in Mexico in April, 2009 was identified as a unique combination of a triple- reassortant swine influenza A virus, compose...The 2009 H1N1 influenza pandemic has attracted worldwide attention. The new virus first emerged in Mexico in April, 2009 was identified as a unique combination of a triple- reassortant swine influenza A virus, composed of genetic information from pigs, hu- mans, birds, and a Eurasian swine influenza virus. Several recent studies on the 2009 H1N1 virus util-ized small datasets to conduct analysis. With new sequences available up to date, we were able to extend the previous research in three areas. The first was finding two networks of co-mutations that may po-tentially affect the current flu-drug binding sites on neuraminidase (NA), one of the two surface proteins of flu virus. The second was discovering a special stalk motif, which was dominant in the H5N1 strains in the past, in the 2009 H1N1 strains for the first time. Due to the high virulence of this motif, the second finding is significant in our current research on 2009 H1N1. The third was updating the phylogenetic an- alysis of current NA sequences of 2009 H1N1 and H5N1, which demonstrated that, in clear contrast to previous findings, the N1 sequences in 2009 are di-verse enough to cover different major branches of the phylogenetic tree of those in previous years. As the novel influenza A H1N1 virus continues to spread globally, our results highlighted the importance of performing timely analysis on the 2009 H1N1 virus.展开更多
文摘The 2009 H1N1 influenza pandemic has attracted worldwide attention. The new virus first emerged in Mexico in April, 2009 was identified as a unique combination of a triple- reassortant swine influenza A virus, composed of genetic information from pigs, hu- mans, birds, and a Eurasian swine influenza virus. Several recent studies on the 2009 H1N1 virus util-ized small datasets to conduct analysis. With new sequences available up to date, we were able to extend the previous research in three areas. The first was finding two networks of co-mutations that may po-tentially affect the current flu-drug binding sites on neuraminidase (NA), one of the two surface proteins of flu virus. The second was discovering a special stalk motif, which was dominant in the H5N1 strains in the past, in the 2009 H1N1 strains for the first time. Due to the high virulence of this motif, the second finding is significant in our current research on 2009 H1N1. The third was updating the phylogenetic an- alysis of current NA sequences of 2009 H1N1 and H5N1, which demonstrated that, in clear contrast to previous findings, the N1 sequences in 2009 are di-verse enough to cover different major branches of the phylogenetic tree of those in previous years. As the novel influenza A H1N1 virus continues to spread globally, our results highlighted the importance of performing timely analysis on the 2009 H1N1 virus.