To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators suc...To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.展开更多
Among the bottlenecks that hinder the improvement of the production efficiency of hot stamping are high strength and difficulty in edge cutting and hole punching.Starting from the preparation of hot stamping multiphas...Among the bottlenecks that hinder the improvement of the production efficiency of hot stamping are high strength and difficulty in edge cutting and hole punching.Starting from the preparation of hot stamping multiphase microstructure materials,this paper developed a plate quenching die system with controllable surface temperature and prepared four types of hot stamping plates with different martensite volume fractions.Then,straight edge cold cutting experiments were performed to study the influence of cutting clearance and cutting force on fracture quality.The results show that the bright zone is the largest when the cutting clearance is 0.14 mm,and the cutting experience coefficient of the hot stamping sheet with each martensite volume fraction is obtained when the cutting clearance is 0.14 mm.The research results of this paper were applied to the production of hot stamping parts.展开更多
Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and ...Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and lifetime of the proton exchange membrane fuel cell(PEMFC).The residual stress and spring back behavior which occur as a result of stamping a bipolar plate are investigated in this study.The effects of the punch radius,the die radius,the channel depth,and the clearance between the punch and the die on the residual stress and forming quality of the bipolar plate are examined.The stamping process can be divided into three stages.The high stress area and the middle section residual stress area were selected to study the formation process and to obtain the composition of the residual stress regions.Spring back was mainly related to the position of the fixed end of the sheet and the degree of plastic deformation,and the sheet thickness have increased by 2μm after spring back.Based on the results of finite element analysis,as described by the distribution of residual stress,the formation,the thickness of the middle cross section and the equivalent plastic strain,it was found that all the tool parameters affected the distribution of the residual stress.This research can provide a design reference for the manufacture of metallic bipolar plates based on the stamping process.展开更多
With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.C...With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.Considering the new generation 600-MPa hot stamping steel,this study investigates the applicable car parts and hot stamping process,then designs a new body-in-white(BIW)crash test for obtaining the crash performance of the new material.Through the actual part development and crash test,it is verified that the application of the new generation hot stamping steel can improve the crash performance of BIW.展开更多
The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa...Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.展开更多
To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments...To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.展开更多
Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to ...Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to further elucidate the springback mechanism. The effects of initial blank temperature, blank-holding force, die closing pressure and die corner radius were studied. It is found that springback decreases remarkably as the initial blank temperature rises up to 500 °C. The springback also reduces with the increase of die holding pressure and the decrease of die corner radius. Under different initial temperatures, the influence of blank-holding force is distinct. In addition, the bending and straightening of the side wall during the stamping process is found to interpret the negative springback phenomenon.展开更多
The aim of this paper is to review the state-of-the-art SFPs and their applications,and to provide a guide for researchers and engineers working in this field.Various SFPs are classified according to the combination w...The aim of this paper is to review the state-of-the-art SFPs and their applications,and to provide a guide for researchers and engineers working in this field.Various SFPs are classified according to the combination ways of stamping and forging operations.The process principle of each combination is reviewed,with its applications discussed.The state-of-the-art of SFPs suggests that future work in this field should focus on the development of high-strength die materials,better lubrication control methods,forming machines with intelligent control capacity and special functions,and some new SFPs for high strength or ultra-high strength materials.展开更多
High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipit...High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.展开更多
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen...To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.展开更多
Based on the deformation characteristic of regular polygonal box stamped parts and the superfluous triangle material wrinkle model,the criterion of regular polygonal box stamped parts without wrinkle was deduced and u...Based on the deformation characteristic of regular polygonal box stamped parts and the superfluous triangle material wrinkle model,the criterion of regular polygonal box stamped parts without wrinkle was deduced and used to predict and control the wrinkle limit.According to the fracture model,the criterion of regular polygonal box stamped parts without fracture was deduced and used to predict and control the fracture limit.Combining the criterion for stamping without wrinkle with that without fracture,the stamping criterion of regular polygonal box stamped parts was obtained to predict and control the stamping limit.Taken the stainless steel0Cr18Ni9(SUS304)sheet and the square box stamped part as examples,the limit diagram was given to predict and control the wrinkle,fracture and stamping limits.It is suitable for the deep drawing without flange,the deep drawing and stretching combined forming with flange and the rigid punch stretching of plane blank.The limit deep-drawing coefficient and the minimum deep-drawing coefficient can be determined,and the appropriate BHF(blank holder force)and the deep-drawing force can be chosen.These provide a reference for the technology planning,the die and mold design and the equipment determination,and a new criterion evaluating sheet stamping formability,which predicts and controls the stamping process,can be applied to the deep drawing under constant or variable BHF conditions.展开更多
The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 a...The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 are investigated and analyzed in this work.The quenching experiment,tensile testing,hardness measurement and microstructure observation were conducted to obtain the mechanical and microstructural data.The results indicate that 30MnB5 possesses a higher tensile strength but a lower elongation than 22MnB5,if hot stamped at the same process parameter.The tensile strength and hardness of the hot stamped specimens decrease under inappropriate heating conditions for two reasons,insufficient austenitization or coarse austenite grains.The austenitic forming rate of 30MnB5 is higher than that of 22MnB5,because more cementite leads to higher nucleation rate and diffusion coefficient of carbon atom.More amount of fine martensite forms under the higher deformation temperature or the quicker cooling rate.展开更多
Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process pa...Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The op-timum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austen-ite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.展开更多
The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the ho...The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the hot stamping process with different solution treatment time.The digital image correlation(DIC)analysis was used to obtain the strain of the specimen.Based on the experiments and modeling,the Yld2000-3d yield criterion and the DF2014 ductile fracture criterion were calibrated and used to characterize the anisotropy and fracture behavior of the metal,respectively.Furthermore,the microstructure of specimens was studied.The experimental and simulation results indicate that the 7075 aluminum alloy retains distinct anisotropy after the hot stamping process,and there is no obvious effect of extending the solution treatment time on the material anisotropy.However,it is found that a longer solution treatment time can increase the fracture strain of the aluminum alloy during the hot stamping process,which may be related to the decrease of the second-phase particles size.展开更多
Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this...Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.展开更多
In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback ...In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.展开更多
The microstructural characteristics and formability at the edges of low carbon pickled steel sheets have been investigated based on the generation of earing and cracking defects while drawing. The microstructure of th...The microstructural characteristics and formability at the edges of low carbon pickled steel sheets have been investigated based on the generation of earing and cracking defects while drawing. The microstructure of the edge features coarse grains and mixed sized grains. The strength of the sheet edge is slightly lower than that at the center. Besides, the formability is obviously worsened. The plastic strain ratios along the longitudinal and transverse orientations are 0.31 and 0.6, respectively, with distinct anisotropy. The plastic strain ratio at the edge is obviously lower than that at the middle of the steel sheet. The observed microstructural characteristics and mechanical properties at the edge of the steel sheet can be attributed to the lower rolling temperature in the two-phase region of pro-eutectoid ferrite and austenite. These differences in microstructure and mechanical properties at the edge of the steel sheet lead to the generation of earing and cracking defects while drawing. The microstructure and mechanical properties at the edge of low carbon pickled steel sheets can be improved via the optimization of the rolling process and the adjustment of chemical composition.展开更多
High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and...High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and one-step carbon partitioning processes are involved.In this study,an integrated model of microstructure evolution relating to Q&P hot stamping was presented with a persuasively predicted results of mechanical properties.The transformation of diffusional phase and non-diffusional phase,including original austenite grain size individually,were considered,as well as the carbon partitioning process which affects the secondary martensite transformation temperature and the subsequent phase transformations.Afterwards,the mechanical properties including hardness,strength,and elongation were calculated through a series of theoretical and empirical models in accordance with phase contents.Especially,a modified elongation prediction model was generated ultimately with higher accuracy than the existed Mileiko’s model.In the end,the unified model was applied to simulate the Q&P hot stamping process of a U-cup part based on the finite element software LS-DYNA,where the calculated outputs were coincident with the measured consequences.展开更多
In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are de...In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are described.The survey of existing works,especially key equipments has revealed several gaps.Some new ideas and programs are proposed on the basis of traditional process.This article aims at providing an insight into a whole process backgrounds and pointing out the great potential for further investigations and innovations of hot stamping.展开更多
基金supported by the China Postdoctoral Science Foundation(Grant No.2022M721395)the National Natural Science Foundation of China(Grant No.72072089).
文摘To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.
文摘Among the bottlenecks that hinder the improvement of the production efficiency of hot stamping are high strength and difficulty in edge cutting and hole punching.Starting from the preparation of hot stamping multiphase microstructure materials,this paper developed a plate quenching die system with controllable surface temperature and prepared four types of hot stamping plates with different martensite volume fractions.Then,straight edge cold cutting experiments were performed to study the influence of cutting clearance and cutting force on fracture quality.The results show that the bright zone is the largest when the cutting clearance is 0.14 mm,and the cutting experience coefficient of the hot stamping sheet with each martensite volume fraction is obtained when the cutting clearance is 0.14 mm.The research results of this paper were applied to the production of hot stamping parts.
基金This research was supported by the Sichuan Science and Technology Program(2023YFS0355).
文摘Stamping is a critical step in the manufacture of metallic bipolar plates.Typically,residual stress and a spring back effect appear on the bipolar plate after the stamping process,which impacts on the performance and lifetime of the proton exchange membrane fuel cell(PEMFC).The residual stress and spring back behavior which occur as a result of stamping a bipolar plate are investigated in this study.The effects of the punch radius,the die radius,the channel depth,and the clearance between the punch and the die on the residual stress and forming quality of the bipolar plate are examined.The stamping process can be divided into three stages.The high stress area and the middle section residual stress area were selected to study the formation process and to obtain the composition of the residual stress regions.Spring back was mainly related to the position of the fixed end of the sheet and the degree of plastic deformation,and the sheet thickness have increased by 2μm after spring back.Based on the results of finite element analysis,as described by the distribution of residual stress,the formation,the thickness of the middle cross section and the equivalent plastic strain,it was found that all the tool parameters affected the distribution of the residual stress.This research can provide a design reference for the manufacture of metallic bipolar plates based on the stamping process.
文摘With the improvement of safety performance,car parts have different requirements for material strength and energy absorption performance.The conventional 1500-MPa hot stamping steel cannot well meet the requirements.Considering the new generation 600-MPa hot stamping steel,this study investigates the applicable car parts and hot stamping process,then designs a new body-in-white(BIW)crash test for obtaining the crash performance of the new material.Through the actual part development and crash test,it is verified that the application of the new generation hot stamping steel can improve the crash performance of BIW.
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.
基金Project (51275185) supported by the National Natural Science Foundation of China
文摘Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.
基金Project(51375369)supported by the National Natural Science Foundation of ChinaProject(SYG201137)supported by the Science and Technology Development Program of Suzhou,China
文摘To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.
基金Projects(U1564202,51705018)supported by the National Natural Science Foundation of ChinaProject(FRF-TP-15-087A1)supported by the Fundamental Research Funds for the Central Universities,China
文摘Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to further elucidate the springback mechanism. The effects of initial blank temperature, blank-holding force, die closing pressure and die corner radius were studied. It is found that springback decreases remarkably as the initial blank temperature rises up to 500 °C. The springback also reduces with the increase of die holding pressure and the decrease of die corner radius. Under different initial temperatures, the influence of blank-holding force is distinct. In addition, the bending and straightening of the side wall during the stamping process is found to interpret the negative springback phenomenon.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.50705034,51175202,51435007 and 51675201)
文摘The aim of this paper is to review the state-of-the-art SFPs and their applications,and to provide a guide for researchers and engineers working in this field.Various SFPs are classified according to the combination ways of stamping and forging operations.The process principle of each combination is reviewed,with its applications discussed.The state-of-the-art of SFPs suggests that future work in this field should focus on the development of high-strength die materials,better lubrication control methods,forming machines with intelligent control capacity and special functions,and some new SFPs for high strength or ultra-high strength materials.
基金Project(2019JJ60050) supported by the Natural Science Foundation of Hunan Province,China
文摘High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.
基金Project(2012ZX04010-081) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.
文摘Based on the deformation characteristic of regular polygonal box stamped parts and the superfluous triangle material wrinkle model,the criterion of regular polygonal box stamped parts without wrinkle was deduced and used to predict and control the wrinkle limit.According to the fracture model,the criterion of regular polygonal box stamped parts without fracture was deduced and used to predict and control the fracture limit.Combining the criterion for stamping without wrinkle with that without fracture,the stamping criterion of regular polygonal box stamped parts was obtained to predict and control the stamping limit.Taken the stainless steel0Cr18Ni9(SUS304)sheet and the square box stamped part as examples,the limit diagram was given to predict and control the wrinkle,fracture and stamping limits.It is suitable for the deep drawing without flange,the deep drawing and stretching combined forming with flange and the rigid punch stretching of plane blank.The limit deep-drawing coefficient and the minimum deep-drawing coefficient can be determined,and the appropriate BHF(blank holder force)and the deep-drawing force can be chosen.These provide a reference for the technology planning,the die and mold design and the equipment determination,and a new criterion evaluating sheet stamping formability,which predicts and controls the stamping process,can be applied to the deep drawing under constant or variable BHF conditions.
基金Projects(51705018,U1564202)supported by the National Natural Science Foundation of China
文摘The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 are investigated and analyzed in this work.The quenching experiment,tensile testing,hardness measurement and microstructure observation were conducted to obtain the mechanical and microstructural data.The results indicate that 30MnB5 possesses a higher tensile strength but a lower elongation than 22MnB5,if hot stamped at the same process parameter.The tensile strength and hardness of the hot stamped specimens decrease under inappropriate heating conditions for two reasons,insufficient austenitization or coarse austenite grains.The austenitic forming rate of 30MnB5 is higher than that of 22MnB5,because more cementite leads to higher nucleation rate and diffusion coefficient of carbon atom.More amount of fine martensite forms under the higher deformation temperature or the quicker cooling rate.
基金financially supported by the Research Fund for the Doctoral Program of Higher Education,China(No.20120006110017)
文摘Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The op-timum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austen-ite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.
基金the National Natural Science Foundation of China(No.U1760205).
文摘The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the hot stamping process with different solution treatment time.The digital image correlation(DIC)analysis was used to obtain the strain of the specimen.Based on the experiments and modeling,the Yld2000-3d yield criterion and the DF2014 ductile fracture criterion were calibrated and used to characterize the anisotropy and fracture behavior of the metal,respectively.Furthermore,the microstructure of specimens was studied.The experimental and simulation results indicate that the 7075 aluminum alloy retains distinct anisotropy after the hot stamping process,and there is no obvious effect of extending the solution treatment time on the material anisotropy.However,it is found that a longer solution treatment time can increase the fracture strain of the aluminum alloy during the hot stamping process,which may be related to the decrease of the second-phase particles size.
文摘Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.
基金Projects(U1564202,51705018)supported by the National Natural Science Foundation of ChinaProject supported by the Beijing Laboratory of Modern Transportation Metal Materials and Processing Technology and the Beijing Key Laboratory of Metal Forming Lightweight,China。
文摘In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.
文摘The microstructural characteristics and formability at the edges of low carbon pickled steel sheets have been investigated based on the generation of earing and cracking defects while drawing. The microstructure of the edge features coarse grains and mixed sized grains. The strength of the sheet edge is slightly lower than that at the center. Besides, the formability is obviously worsened. The plastic strain ratios along the longitudinal and transverse orientations are 0.31 and 0.6, respectively, with distinct anisotropy. The plastic strain ratio at the edge is obviously lower than that at the middle of the steel sheet. The observed microstructural characteristics and mechanical properties at the edge of the steel sheet can be attributed to the lower rolling temperature in the two-phase region of pro-eutectoid ferrite and austenite. These differences in microstructure and mechanical properties at the edge of the steel sheet lead to the generation of earing and cracking defects while drawing. The microstructure and mechanical properties at the edge of low carbon pickled steel sheets can be improved via the optimization of the rolling process and the adjustment of chemical composition.
基金Supported by National Natural Science Foundation of China (Grant Nos. 51775336,U1564203)Program of Shanghai Academic Research Leadership (Grant No. 19XD1401900)
文摘High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and one-step carbon partitioning processes are involved.In this study,an integrated model of microstructure evolution relating to Q&P hot stamping was presented with a persuasively predicted results of mechanical properties.The transformation of diffusional phase and non-diffusional phase,including original austenite grain size individually,were considered,as well as the carbon partitioning process which affects the secondary martensite transformation temperature and the subsequent phase transformations.Afterwards,the mechanical properties including hardness,strength,and elongation were calculated through a series of theoretical and empirical models in accordance with phase contents.Especially,a modified elongation prediction model was generated ultimately with higher accuracy than the existed Mileiko’s model.In the end,the unified model was applied to simulate the Q&P hot stamping process of a U-cup part based on the finite element software LS-DYNA,where the calculated outputs were coincident with the measured consequences.
基金National Science and Technology Supporting Program of China(No.2011BAG03B02)
文摘In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are described.The survey of existing works,especially key equipments has revealed several gaps.Some new ideas and programs are proposed on the basis of traditional process.This article aims at providing an insight into a whole process backgrounds and pointing out the great potential for further investigations and innovations of hot stamping.