期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A multi-target stance detection based on Bi-LSTM network with position-weight 被引量:1
1
作者 Xu Yilong Li Wenfa +1 位作者 Wang Gongming Huang Lingyun 《High Technology Letters》 EI CAS 2020年第4期442-447,共6页
In the task of multi-target stance detection,there are problems the mutual influence of content describing different targets,resulting in reduction in accuracy.To solve this problem,a multi-target stance detection alg... In the task of multi-target stance detection,there are problems the mutual influence of content describing different targets,resulting in reduction in accuracy.To solve this problem,a multi-target stance detection algorithm based on a bidirectional long short-term memory(Bi-LSTM)network with position-weight is proposed.First,the corresponding position of the target in the input text is calculated with the ultimate position-weight vector.Next,the position information and output from the Bi-LSTM layer are fused by the position-weight fusion layer.Finally,the stances of different targets are predicted using the LSTM network and softmax classification.The multi-target stance detection corpus of the American election in 2016 is used to validate the proposed method.The results demonstrate that the Bi-LSTM network with position-weight achieves an advantage of 1.4%in macro average F1 value in the comparison of recent algorithms. 展开更多
关键词 long short-term memory(LSTM) MULTI-TARGET natural language processing stance detection
下载PDF
Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network
2
作者 Kelan Ren Facheng Yan +3 位作者 Honghua Chen Wen Jiang Bin Wei Mingshu Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期789-807,共19页
The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns.Traditional stan... The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns.Traditional stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic structures.This paper focuses on effectively mining and utilizing sentimentsemantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network(SentiHAN)for cross-target stance detection.SentiHAN introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various fine-grain levels.This model integrates phrase-level combinatorial sentiment knowledge to effectively bridge the knowledge gap between known and unknown targets.By doing so,it enables a comprehensive understanding of stance representations for unknown targets across different sentiments and semantic structures.The model’s ability to leverage sentimentsemantics knowledge enhances its performance in detecting stances that may not be directly observable from the immediate context.Extensive experimental results indicate that SentiHAN significantly outperforms existing benchmark methods in terms of both accuracy and robustness.Moreover,the paper employs ablation studies and visualization techniques to explore the intricate relationship between sentiment and stance.These analyses further confirm the effectiveness of sentence-level combinatorial sentiment knowledge in improving stance detection capabilities. 展开更多
关键词 Cross-target stance detection sentiment analysis commentary-level texts hierarchical attention network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部