This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested house...This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested household loads are carried out. Site radiation data and the electrical load data of a typical household in the considered site are taken into account during the design steps. The reliability of the system is quantified by the loss of load probability. A computer program is developed to simulate the PV system behavior and to numerically find an optimal combination of PV array and battery bank for the design of stand-alone photovoltaic systems in terms of reliability and costs. The program calculates life cycle cost and annualized unit electrical cost. Simulations results showed that a value of loss of load probability LLP can be met by several combinations of PV array and battery storage. The method developed here uniquely determines the optimum configuration that meets the load demand with the minimum cost. The difference between the costs of these combinations is very large. The optimal unit electrical cost of 1 kWh for LLP = 0.049 is $0.293;while for LLP 0.0027 it is $0.402. The results of the study encouraged the use of the PV systems to electrify the remote sites in Jordan.展开更多
In this paper, a stand-alone hybrid microgrid consisting of wind turbines, photovoltaic (PV) arrays and storage battery banks is developed for use in Qinghai Province, China. With the help of Software Homer and Matlab...In this paper, a stand-alone hybrid microgrid consisting of wind turbines, photovoltaic (PV) arrays and storage battery banks is developed for use in Qinghai Province, China. With the help of Software Homer and Matlab, different variables such as annual average wind speed, annual average load demand, and annual capacity shortage are considered. The net present value is then used during an entire project lifetime for the optimization solution.展开更多
为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IG...为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。展开更多
Renewable energy sources(RESs)are considered to be reliable and green electric power generation sources.Photovoltaics(PVs)and wind turbines(WTs)are used to provide electricity in remote areas.Optimal sizing of hybrid ...Renewable energy sources(RESs)are considered to be reliable and green electric power generation sources.Photovoltaics(PVs)and wind turbines(WTs)are used to provide electricity in remote areas.Optimal sizing of hybrid RESs is a vital challenge in a stand-alone environment.The meta-heuristic algorithms proposed in the past are dependent on algorithm-specific parameters for achieving an optimal solution.This paper proposes a hybrid algorithm of Jaya and a teaching–learning-based optimization(TLBO)named the JLBO algorithm for the optimal unit sizing of a PV–WT–battery hybrid system to satisfy the consumer’s load at minimal total annual cost(TAC).The reliability of the system is considered by a maximum allowable loss of power supply probability(LPSPmax)concept.The results obtained from the JLBO algorithm are compared with the original Jaya,TLBO,and genetic algorithms.The JLBO results show superior performance in terms of TAC,and the PV–WT–battery hybrid system is found to be the most economical scenario.This system provides a cost-effective solution for all proposed LPSPmax values as compared with PV–battery and WT–battery systems.展开更多
The photovoltaic (PV) generator exhibits a nonlinear current-voltage (I-V) characteristic that its maximum power point (MPP) varies with solar insolation. In this paper, a maximum power point tracking (MPPT) method us...The photovoltaic (PV) generator exhibits a nonlinear current-voltage (I-V) characteristic that its maximum power point (MPP) varies with solar insolation. In this paper, a maximum power point tracking (MPPT) method using fuzzy logic control (FLC) is presented. This method is based on the concept of perturbation and observation (P & O) algorithm to track the MPP of a stand-alone PV system. The controller is used to maximize the power generated by the PV array and the simulation of the system is implemented in MATLAB. Simulation results are compared with those obtained by the conventional P & O controller. Results show that the FLC gives better and more reliable control for the stand-alone PV system feeding hybrid loads.展开更多
The employment of maximum power point tracking techniques in the photovoltaic power systems is well known and even of immense importance. There are various techniques to track the maximum power point reported in sever...The employment of maximum power point tracking techniques in the photovoltaic power systems is well known and even of immense importance. There are various techniques to track the maximum power point reported in several literatures. In such context, there is an increasing interest in developing a more appropriate and effective maximum power point tracking control methodology to ensure that the photovoltaic arrays guarantee as much of their available output power as possible to the load for any temperature and solar radiation levels. In this paper, theoretical details of the work, carried out to develop and implement a maximum power point tracking controller using neural networks for a stand-alone photovoltaic system, are presented. Attention has been also paid to the command of the power converter to achieve maximum power point tracking. Simulations results, using Matlab/Simulink software, presented for this approach under rapid variation of insolation and temperature conditions, confirm the effectiveness of the proposed method both in terms of efficiency and fast response time. Negligible oscillations around the maximum power point and easy implementation are the main advantages of the proposed maximum power point tracking (MPPT) control method.展开更多
In order to alleviate environmental pollution of Urumqi,China,a stand-alone hybrid wind / PV / battery power system was studied for this region. An accurate structure and model of the standalone hybrid wind / PV / bat...In order to alleviate environmental pollution of Urumqi,China,a stand-alone hybrid wind / PV / battery power system was studied for this region. An accurate structure and model of the standalone hybrid wind / PV / battery power system for a household in that region was presented in this study. On the basis of wind speed,solar radiation,ambient temperature,and load data,the optimal design of the hybrid system is determined using a genetic algorithm( GA). As a result,the optimal hybrid system for a household consists of one wind turbine,21. 407 6 m^2 of PV arrays,and 20. 958 kW ·h of battery bank capacity. The system has a loss of power supply probability( LPSP) of 0. 019 9 and the minimum total annualized cost is $ 35 333.展开更多
The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable ene...This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable energy and reduce the cost of investment and operation. Next, the problems in the optimal planning for a stand-alone microgrid system are summarized, including the unique operational control targets, the flexible combination approaches and the operation strategies of distributed generation energy supply system, and the special requirements of the reliability of power supply quality factor from the different users. And then, centering on the operational control and the advanced energy management strategy, the optimal mathematical models and the solving methods, the reliability assessment approaches and the improvement measures of a stand-alone microgrid system, an overview of the general situation of the recent research at home and abroad and the limitations of the study are summarized. Finally, several problems, existing in the optimal planning of stand-alone microgrid system, to be urgently solved, are put forward.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
文摘This paper presents a design for a stand-alone photovoltaic (PV) system to provide the required electricity for a single residential household in rural area in Jordan. The complete design steps for the suggested household loads are carried out. Site radiation data and the electrical load data of a typical household in the considered site are taken into account during the design steps. The reliability of the system is quantified by the loss of load probability. A computer program is developed to simulate the PV system behavior and to numerically find an optimal combination of PV array and battery bank for the design of stand-alone photovoltaic systems in terms of reliability and costs. The program calculates life cycle cost and annualized unit electrical cost. Simulations results showed that a value of loss of load probability LLP can be met by several combinations of PV array and battery storage. The method developed here uniquely determines the optimum configuration that meets the load demand with the minimum cost. The difference between the costs of these combinations is very large. The optimal unit electrical cost of 1 kWh for LLP = 0.049 is $0.293;while for LLP 0.0027 it is $0.402. The results of the study encouraged the use of the PV systems to electrify the remote sites in Jordan.
文摘In this paper, a stand-alone hybrid microgrid consisting of wind turbines, photovoltaic (PV) arrays and storage battery banks is developed for use in Qinghai Province, China. With the help of Software Homer and Matlab, different variables such as annual average wind speed, annual average load demand, and annual capacity shortage are considered. The net present value is then used during an entire project lifetime for the optimization solution.
文摘为研究太阳能PV/T热电联供系统的性能和针对太阳能PV/T系统复杂的能量平衡方程,搭建了太阳能PV/T系统试验台,同时建立了基于改进灰狼优化的BP神经网络(back propagation neural network model based on improved grey wolf algorithm,IGWO-BP)预测模型,在晴朗天气下进行试验,并采用该模型对系统电功率以及蓄热水箱内水温进行预测。结果显示,晴朗日系统的电效率8.7%~12.2%、热效率51.7%;预测结果与BP神经网络预测模型、基于粒子群优化的BP神经网络(back propagation neural network based on particle swarm optimization,PSO-BP)预测模型和卷积神经网络(convolutional neural network,CNN)预测模型预测结果进行比较,结果显示IGWO-BP预测模型电效率预测模型的绝对百分比误差(mean absolute percentage error,MAPE)、决定系数(determination coefficient,R^(2))、均方根误差(root mean square error,RMSE)、效率因子(efficient factor,EF)和Pearson相关系数(pearson related coefficient,r)分别为4.5E-05、0.99、0.24、0.99和1.00,在储热罐温度预测中,上述指标分别为8.90E-04、0.98、0.07、0.98、0.99,均优于其他预测模型,IGWO-BP神经网络预测模型具有更好的预测性能。研究结果可为太阳能PV/T热电联供系统性能预测与优化控制提供参考。
文摘Renewable energy sources(RESs)are considered to be reliable and green electric power generation sources.Photovoltaics(PVs)and wind turbines(WTs)are used to provide electricity in remote areas.Optimal sizing of hybrid RESs is a vital challenge in a stand-alone environment.The meta-heuristic algorithms proposed in the past are dependent on algorithm-specific parameters for achieving an optimal solution.This paper proposes a hybrid algorithm of Jaya and a teaching–learning-based optimization(TLBO)named the JLBO algorithm for the optimal unit sizing of a PV–WT–battery hybrid system to satisfy the consumer’s load at minimal total annual cost(TAC).The reliability of the system is considered by a maximum allowable loss of power supply probability(LPSPmax)concept.The results obtained from the JLBO algorithm are compared with the original Jaya,TLBO,and genetic algorithms.The JLBO results show superior performance in terms of TAC,and the PV–WT–battery hybrid system is found to be the most economical scenario.This system provides a cost-effective solution for all proposed LPSPmax values as compared with PV–battery and WT–battery systems.
文摘The photovoltaic (PV) generator exhibits a nonlinear current-voltage (I-V) characteristic that its maximum power point (MPP) varies with solar insolation. In this paper, a maximum power point tracking (MPPT) method using fuzzy logic control (FLC) is presented. This method is based on the concept of perturbation and observation (P & O) algorithm to track the MPP of a stand-alone PV system. The controller is used to maximize the power generated by the PV array and the simulation of the system is implemented in MATLAB. Simulation results are compared with those obtained by the conventional P & O controller. Results show that the FLC gives better and more reliable control for the stand-alone PV system feeding hybrid loads.
文摘The employment of maximum power point tracking techniques in the photovoltaic power systems is well known and even of immense importance. There are various techniques to track the maximum power point reported in several literatures. In such context, there is an increasing interest in developing a more appropriate and effective maximum power point tracking control methodology to ensure that the photovoltaic arrays guarantee as much of their available output power as possible to the load for any temperature and solar radiation levels. In this paper, theoretical details of the work, carried out to develop and implement a maximum power point tracking controller using neural networks for a stand-alone photovoltaic system, are presented. Attention has been also paid to the command of the power converter to achieve maximum power point tracking. Simulations results, using Matlab/Simulink software, presented for this approach under rapid variation of insolation and temperature conditions, confirm the effectiveness of the proposed method both in terms of efficiency and fast response time. Negligible oscillations around the maximum power point and easy implementation are the main advantages of the proposed maximum power point tracking (MPPT) control method.
基金On-Job Doctorate Foundation of Nanjing Institute of Technology,China(No.ZKJ201401)National Natural Science Foundation of China(No.11302097)+1 种基金Postdoctoral Foundation of Jiangsu,China(No.1301060B)Jiangsu Provincial Graduate Student Innovation Project,China(No.CXZZ11_0444)
文摘In order to alleviate environmental pollution of Urumqi,China,a stand-alone hybrid wind / PV / battery power system was studied for this region. An accurate structure and model of the standalone hybrid wind / PV / battery power system for a household in that region was presented in this study. On the basis of wind speed,solar radiation,ambient temperature,and load data,the optimal design of the hybrid system is determined using a genetic algorithm( GA). As a result,the optimal hybrid system for a household consists of one wind turbine,21. 407 6 m^2 of PV arrays,and 20. 958 kW ·h of battery bank capacity. The system has a loss of power supply probability( LPSP) of 0. 019 9 and the minimum total annualized cost is $ 35 333.
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
文摘This paper describes the characteristics and optimal methods for the planning of stand-alone microgrid system, in order to improve the power supply reliability, increase the coefficient of utilization of renewable energy and reduce the cost of investment and operation. Next, the problems in the optimal planning for a stand-alone microgrid system are summarized, including the unique operational control targets, the flexible combination approaches and the operation strategies of distributed generation energy supply system, and the special requirements of the reliability of power supply quality factor from the different users. And then, centering on the operational control and the advanced energy management strategy, the optimal mathematical models and the solving methods, the reliability assessment approaches and the improvement measures of a stand-alone microgrid system, an overview of the general situation of the recent research at home and abroad and the limitations of the study are summarized. Finally, several problems, existing in the optimal planning of stand-alone microgrid system, to be urgently solved, are put forward.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.