In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing t...In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.展开更多
There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignme...There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.展开更多
针对大方位失准角捷联惯性导航系统误差模型非线性的特点,利用基于迭代测量更新的中心差分卡尔曼滤波(iterated central difference Kalman filter,ICDKF)方法进行初始对准。与传统的非线性扩展卡尔曼滤波相比,ICDKF不仅能够提高滤波精...针对大方位失准角捷联惯性导航系统误差模型非线性的特点,利用基于迭代测量更新的中心差分卡尔曼滤波(iterated central difference Kalman filter,ICDKF)方法进行初始对准。与传统的非线性扩展卡尔曼滤波相比,ICDKF不仅能够提高滤波精度,而且不需要模型的具体解析形式,避免了复杂的雅可比矩阵的推导;同时ICDKF通过迭代测量更新,提高了目前存在的中心差分卡尔曼滤波的估计精度。仿真结果进一步表明ICDKF算法的可行性与优越性,能够满足初始对准的要求。展开更多
文摘In this work,a fast and accurate stationary alignment method for strapdown inertial navigation system (SINS) is proposed. It has been demonstrated that the stationary alignment of SINS can be improved by employing the multiposition technique,but the alignment time of the azimuth error is relatively longer. Over here, the two-position alignment principle is presented. On the basis of this SINS error model, a fast estimation algorithm of the azimuth error for the initial alignment of SINS on stationary base is derived fully from the horizontal velocity outputs and the output rates, and the novel azimuth error estimation algorithm is used for the two-position alignment. Consequently, the speed and accuracy of the SINS' s initial alignment is enhanced greatly. The computer simulation results illustrate the efficiency of this alignment method.
基金the National Natural Science Foundationunder Grant No.60604019.
文摘There are many filtering methods that can be used for the initial alignment of an integrated inertial navigation system. This paper discussed the use of GPS, but focused on two kinds of filters for the initial alignment of an integrated strapdown inertial navigation system (SINS). One method is based on the Kalman filter (KF), and the other is based on the robust filter. Simulation results showed that the filter provides a quick transient response and a little more accurate estimate than KF, given substantial process noise or unknown noise statistics. So the robust filter is an effective and useful method for initial alignment of SINS. This research should make the use of SINS more popular, and is also a step for further research.
文摘针对大方位失准角捷联惯性导航系统误差模型非线性的特点,利用基于迭代测量更新的中心差分卡尔曼滤波(iterated central difference Kalman filter,ICDKF)方法进行初始对准。与传统的非线性扩展卡尔曼滤波相比,ICDKF不仅能够提高滤波精度,而且不需要模型的具体解析形式,避免了复杂的雅可比矩阵的推导;同时ICDKF通过迭代测量更新,提高了目前存在的中心差分卡尔曼滤波的估计精度。仿真结果进一步表明ICDKF算法的可行性与优越性,能够满足初始对准的要求。