[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spec...[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spectrum and scanning electron microscope, and the property of starch and styrene graft copoly- mer was confirmed through grinding experiment, tensile strength, water absorption rate, hot water resistance properties and enzymatic properties analysis. [Result] The starch and styrene graft copolymer had the properties of thermoplastic and microbial degradation. IConclusion] The starch and styrene graft copolymer is expected to be developed as a biodegradable material.展开更多
The present work deals with the development of controlled release tablets of salbutamol sulphate(SS)using graft copolymers of methyl methacrylate(St-g-PMMA and Ast-g-PMMA)on starch and acetylated starch.Formulations w...The present work deals with the development of controlled release tablets of salbutamol sulphate(SS)using graft copolymers of methyl methacrylate(St-g-PMMA and Ast-g-PMMA)on starch and acetylated starch.Formulations were evaluated for physical characteristics like hardness,friability,drug release,drug content and weight variations,which fulfilled all the official requirements of tablet dosage form.The release rates from formulated matrix tablets were studied at SGF(pH 1.2)followed by SIF(pH 6.8).Drug release from the graft copolymer based tablets was found to be sustained upto the 14 h with>75%drug release.The in-vitro release study showed that the graft copolymer based matrix formulations(F3&F4)exhibited highest correlation value(r2)for higuchi kinetic model and Korsmeyer's model with n values between 0.61 and 0.67 proved that release mechanisms were governed by both diffusion and erosion mechanism.There was no significant difference in the pharmacokinetic parameters(tmax,Cmax,AUC,Ke,and t1/2)of the graft copolymers matrices and HPMC K100M matrix tablets,indicating their comparable sustained release effect.The potential of graft copolymers to sustain the drug release is well supported by in-vivo pharmacokinetic studies and their adequate physicochemical properties make them promising excipients for controlled drug delivery system.展开更多
The starch-g-lactic acid copolymer was synthesized with catalysis of sulfuric acid by onestep process, and the structure of starch-g-lactic acid copolymer was characterized by means of IR, 13C-NMR, HMBC, XRD, and SEM....The starch-g-lactic acid copolymer was synthesized with catalysis of sulfuric acid by onestep process, and the structure of starch-g-lactic acid copolymer was characterized by means of IR, 13C-NMR, HMBC, XRD, and SEM. The experimental results show that the maximum grafting degree of starch can reach 75% when the starch-g-lactic acid copolymer is activated at 80 ℃ for 2 h and reacted with lactic acid at 90 ℃ for 4 h in vacuum.展开更多
The starch/D,L-lactide graft copolymers were synthesized by reacting D,L-lactide with corn starch in N,N-dimethylacetamide (DMAM) in the presence of triethylamine (NEt3) and anhydrous lithium chloride. The effect of r...The starch/D,L-lactide graft copolymers were synthesized by reacting D,L-lactide with corn starch in N,N-dimethylacetamide (DMAM) in the presence of triethylamine (NEt3) and anhydrous lithium chloride. The effect of reaction time and the molar ratio of D,L-lactide to glucose structural unit of starch on monomer conversion(C%), graft (G%) and graft efficiency (GE%) were studied. The C%, G% and GE% could approach 37.3%,179.7% and 68.0%, respectively when the molar ratio of D,L-lactide to glucose structural unit of starch is 10:1 and the graft copolymerization was carried out at 80-85℃ for 4 hours under nitrogen atmosphere. The Fourier transforms infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) spectroscopy were used in order to characterize the graft copolymers. FTIR spectra show that absorption band at 1740 cm-1 confirmed the formation of ester bond, indicating the starch /D,L-lactide graft copolymers were produced, the DSC characteristic results show the melting temperature of the graft copolymer were elevated slightly as the molar ratio of D,L-lactide to glucose structural units of starch increased and the X-ray diffraction spectra show the synthesized graft copolymers were amorphous. The degradability of graft copolymer was tested with the aid of acid, alkali and microbe such as bacillus subtilis and staphylococcus aureus. The results of water resistance show the graft copolymer produced can be used as a component of impermeable coating for cardboard.展开更多
Methyl methacrylate(MMA) and vinyl acetate(VAc) were grafted onto corn starch with manganic pyrophosphate{[Mn(H 2P 2O 7) 3] 3-} as the initiator and water as the reaction medium. The influences of reaction condit...Methyl methacrylate(MMA) and vinyl acetate(VAc) were grafted onto corn starch with manganic pyrophosphate{[Mn(H 2P 2O 7) 3] 3-} as the initiator and water as the reaction medium. The influences of reaction conditions, including pH value, initiator concentration, monomer concentration and its composition, on percent grafting and grafting efficiency were investigated. The graft copolymer was characterized by means of IR spectroscopy, scanning electron micrograph(SEM) and 1H NMR spectroscopy. The biodegradation experiment showed that the degradation of corn starch-g-poly(MMA-co-VAc) was mainly from starch. However, after poly VAc in the side chain was transformed into poly vinyl alcohol(PVA), both starch and the grafted side chain could be degraded completely.展开更多
文摘[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spectrum and scanning electron microscope, and the property of starch and styrene graft copoly- mer was confirmed through grinding experiment, tensile strength, water absorption rate, hot water resistance properties and enzymatic properties analysis. [Result] The starch and styrene graft copolymer had the properties of thermoplastic and microbial degradation. IConclusion] The starch and styrene graft copolymer is expected to be developed as a biodegradable material.
文摘The present work deals with the development of controlled release tablets of salbutamol sulphate(SS)using graft copolymers of methyl methacrylate(St-g-PMMA and Ast-g-PMMA)on starch and acetylated starch.Formulations were evaluated for physical characteristics like hardness,friability,drug release,drug content and weight variations,which fulfilled all the official requirements of tablet dosage form.The release rates from formulated matrix tablets were studied at SGF(pH 1.2)followed by SIF(pH 6.8).Drug release from the graft copolymer based tablets was found to be sustained upto the 14 h with>75%drug release.The in-vitro release study showed that the graft copolymer based matrix formulations(F3&F4)exhibited highest correlation value(r2)for higuchi kinetic model and Korsmeyer's model with n values between 0.61 and 0.67 proved that release mechanisms were governed by both diffusion and erosion mechanism.There was no significant difference in the pharmacokinetic parameters(tmax,Cmax,AUC,Ke,and t1/2)of the graft copolymers matrices and HPMC K100M matrix tablets,indicating their comparable sustained release effect.The potential of graft copolymers to sustain the drug release is well supported by in-vivo pharmacokinetic studies and their adequate physicochemical properties make them promising excipients for controlled drug delivery system.
文摘The starch-g-lactic acid copolymer was synthesized with catalysis of sulfuric acid by onestep process, and the structure of starch-g-lactic acid copolymer was characterized by means of IR, 13C-NMR, HMBC, XRD, and SEM. The experimental results show that the maximum grafting degree of starch can reach 75% when the starch-g-lactic acid copolymer is activated at 80 ℃ for 2 h and reacted with lactic acid at 90 ℃ for 4 h in vacuum.
文摘The starch/D,L-lactide graft copolymers were synthesized by reacting D,L-lactide with corn starch in N,N-dimethylacetamide (DMAM) in the presence of triethylamine (NEt3) and anhydrous lithium chloride. The effect of reaction time and the molar ratio of D,L-lactide to glucose structural unit of starch on monomer conversion(C%), graft (G%) and graft efficiency (GE%) were studied. The C%, G% and GE% could approach 37.3%,179.7% and 68.0%, respectively when the molar ratio of D,L-lactide to glucose structural unit of starch is 10:1 and the graft copolymerization was carried out at 80-85℃ for 4 hours under nitrogen atmosphere. The Fourier transforms infra-red (FTIR) spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) spectroscopy were used in order to characterize the graft copolymers. FTIR spectra show that absorption band at 1740 cm-1 confirmed the formation of ester bond, indicating the starch /D,L-lactide graft copolymers were produced, the DSC characteristic results show the melting temperature of the graft copolymer were elevated slightly as the molar ratio of D,L-lactide to glucose structural units of starch increased and the X-ray diffraction spectra show the synthesized graft copolymers were amorphous. The degradability of graft copolymer was tested with the aid of acid, alkali and microbe such as bacillus subtilis and staphylococcus aureus. The results of water resistance show the graft copolymer produced can be used as a component of impermeable coating for cardboard.
基金Supported by the Natural Science Foundation of Henan Province(No.9715 0 0 10 )
文摘Methyl methacrylate(MMA) and vinyl acetate(VAc) were grafted onto corn starch with manganic pyrophosphate{[Mn(H 2P 2O 7) 3] 3-} as the initiator and water as the reaction medium. The influences of reaction conditions, including pH value, initiator concentration, monomer concentration and its composition, on percent grafting and grafting efficiency were investigated. The graft copolymer was characterized by means of IR spectroscopy, scanning electron micrograph(SEM) and 1H NMR spectroscopy. The biodegradation experiment showed that the degradation of corn starch-g-poly(MMA-co-VAc) was mainly from starch. However, after poly VAc in the side chain was transformed into poly vinyl alcohol(PVA), both starch and the grafted side chain could be degraded completely.