R. Genzel and A. Ghez were awarded the 2020 Nobel Prize in Physics for their discovery that Sgr A* is a supermassive compact object, for which Supermassive Black Hole (SBH) was the only accepted explanation. In 2013, ...R. Genzel and A. Ghez were awarded the 2020 Nobel Prize in Physics for their discovery that Sgr A* is a supermassive compact object, for which Supermassive Black Hole (SBH) was the only accepted explanation. In 2013, we proposed a principally different explanation of supermassive compact objects: “Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores” [1]. According to the developed Hypersphere World-Universe Model (WUM), the World consists of Dark Matter (about 92.8% of the total Matter) and Ordinary matter (about 7.2%). It means that Dark Matter (DM) should play the main role in any Cosmological model. It is the case in WUM, and Ordinary matter is a byproduct of Dark Matter Particles (DMPs) self-annihilation. In present paper, we discuss Dark Stars, Supermassive and Ultramassive Dark Macroobjects in frames of WUM.展开更多
For studying the anisotropie strange quark stars, we assume that the radial pressure inside an anisotropic star can be obtained simply by isotropie pressure plus an additional Gaussian term with three free parameters ...For studying the anisotropie strange quark stars, we assume that the radial pressure inside an anisotropic star can be obtained simply by isotropie pressure plus an additional Gaussian term with three free parameters (A, μ and X). According to recent observations, a pulsar in a mass range of 1.97±0.04M has been measured. Hence, we take this opportunity to set the free parameters of our model. We fix X by applying boundary and stability conditions and then search the A - μ parameter space For a maximum mass range of 1.9M 〈 Mmax 〈 2.1M. Our results indicate that anisotropy increases the maximum mass M and also its corresponding radius R for a typical strange quark star. Furthermore, our model shows magnetic field and electric charge increase the anisotropy factor △. In fact, △ has a maximum on the surface and this maximum goes up in the presence of magnetic field and electric charge. Finally, we show that anisotropy can be more effective than either magnetic field or electric charge in raising maximum mass of strange quark stars.展开更多
K^- condensation and quark deconfinement phase transitions in neutron stars are investigated. We use the modified quark-meson coupling model for hadronic phase and the MIT bag model for quark phase. With the equation ...K^- condensation and quark deconfinement phase transitions in neutron stars are investigated. We use the modified quark-meson coupling model for hadronic phase and the MIT bag model for quark phase. With the equation of state (EOS) solved self-consistently, we discuss the properties of neutron stars. We find that the EOS of pure hadron matter with condensed K- phase should be ruled out by the redshift for star EX00748-676, while EOS containing unpaired quark matter phase with B1/4 being about 180 MeV could be consistent with both this observation and the best measured mass of star PSR 1913 + 16. But if the recent inferred massive star among Terzan 5 with M 〉 1.68M is confirmed, all the present EOSes with condensed phase and deconfined phase would be ruled out.展开更多
We present model atmosphere analysis for a sample of B-type stars in optical region to obtain their fundamental parameters e.g. effective temperature, surface gravities, and rotational velocities. Approximate masses f...We present model atmosphere analysis for a sample of B-type stars in optical region to obtain their fundamental parameters e.g. effective temperature, surface gravities, and rotational velocities. Approximate masses for the sample of stars under study are obtained by comparing the resulted effective temperatures and surface gravities with the evolutionary tracks. Comparison between these masses and the empirical effective temperatures-mass relation revealed good agreement.展开更多
In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar mas...In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.展开更多
Based on the turbulent convection model (TCM) of Li & Yang, we have studied the characteristics of turbulent convection in the envelopes of 2 and 5M⊙ stars at the red giant branch and asymptotic giant branch phase...Based on the turbulent convection model (TCM) of Li & Yang, we have studied the characteristics of turbulent convection in the envelopes of 2 and 5M⊙ stars at the red giant branch and asymptotic giant branch phases. The TCM has been successfully applied over the entire convective envelopes, including the convective unstable zone and the overshooting regions. We find that the convective motions become progressively stronger when the stellar models are located farther up along the Hayashi line. In the convective unstable zone, we find that the turbulent correlations are proportional to functions of a common factor (V - V^d)T, which explains similar distributions in those correlations. For the TCM we find that if the obtained stellar temperature structure is close to that of the mixing length theory (MLT), the convective motion will have a much larger velocity and thus be more violent. However, if the turbulent velocity is adjusted to be close to that of the MLT, the superadiabatic convection zone would be much more extended inward, which would lead to a lower effective temperature of the stellar model. For the overshooting distance, we find that the e-folding lengths of the turbulent kinetic energy k in both the top and bottom overshooting regions decrease as the stellar model is progressively located farther up along the Hayashi line, but both the extents of the decrease are not obvious. The overshooting distances of the turbulent correlation /u'rT" are almost the same for the different stellar models with the same set of TCM parameters. For the decay modes of the kinetic energy k, we find that they are very similar for different stellar models based on the same set of TCM parameters, and there is a nearly linear relationship between lg k and In P for different stellar models. When Cs or α increases while the other parameters are fixed, the obtained linearly decaying distance will become longer.展开更多
A uniform strong magnetic field is considered in calculating the properties of neutron star rotating at the Kepler frequency. The results show that the effect of the magnetic field on the properties of neutron star is...A uniform strong magnetic field is considered in calculating the properties of neutron star rotating at the Kepler frequency. The results show that the effect of the magnetic field on the properties of neutron star is evident, and the properties of the neutron stars rotating at the Kepler frequency can be used as a criterion to the equations of states of the neutron star matters.展开更多
In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant g...In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant graphs from inside of them, but they did not exist as a separate object of study in the year of 2002, as for all we knew. We now know that they can be used to model even social networking interactions, and they do that job better than any other graph we could be trying to use there. With the development of our mathematical tools, lots of conclusions will be made much more believable and therefore will become much more likely to get support from the relevant industries when attached to new queries.展开更多
In this paper, we use the well-known Hartle’s perturbation method in order to compute models of differentially rotating neutron stars obeying realistic equations of state. In our numerical treatment, we keep terms up...In this paper, we use the well-known Hartle’s perturbation method in order to compute models of differentially rotating neutron stars obeying realistic equations of state. In our numerical treatment, we keep terms up to third order in the angular velocity. We present indicative numerical results for models satisfying a particular differential rotation law. We emphasize on computing the change in mass owing to this differential rotation law.展开更多
We implement the so-called “complex-plane strategy” for computing general-relativistic polytropic models of uniformly rotating neutron stars. This method manages the problem by performing all numerical integrations,...We implement the so-called “complex-plane strategy” for computing general-relativistic polytropic models of uniformly rotating neutron stars. This method manages the problem by performing all numerical integrations, required within the framework of Hartle’s perturbation method, in the complex plane. We give emphasis on computing corrections up to third order in the angular velocity, and the mass-shedding limit. We also compute the angular momentum, moment of inertia, rotational kinetic energy, and gravitational potential energy of the models considered.展开更多
The Rouse-Zimm model with slippage was improved and the basic parameters of modelwere modified to explain the rheological properties of star-type branched polymersolutions. The theoretical results show good agreement ...The Rouse-Zimm model with slippage was improved and the basic parameters of modelwere modified to explain the rheological properties of star-type branched polymersolutions. The theoretical results show good agreement with experimental data.展开更多
文摘R. Genzel and A. Ghez were awarded the 2020 Nobel Prize in Physics for their discovery that Sgr A* is a supermassive compact object, for which Supermassive Black Hole (SBH) was the only accepted explanation. In 2013, we proposed a principally different explanation of supermassive compact objects: “Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores” [1]. According to the developed Hypersphere World-Universe Model (WUM), the World consists of Dark Matter (about 92.8% of the total Matter) and Ordinary matter (about 7.2%). It means that Dark Matter (DM) should play the main role in any Cosmological model. It is the case in WUM, and Ordinary matter is a byproduct of Dark Matter Particles (DMPs) self-annihilation. In present paper, we discuss Dark Stars, Supermassive and Ultramassive Dark Macroobjects in frames of WUM.
文摘For studying the anisotropie strange quark stars, we assume that the radial pressure inside an anisotropic star can be obtained simply by isotropie pressure plus an additional Gaussian term with three free parameters (A, μ and X). According to recent observations, a pulsar in a mass range of 1.97±0.04M has been measured. Hence, we take this opportunity to set the free parameters of our model. We fix X by applying boundary and stability conditions and then search the A - μ parameter space For a maximum mass range of 1.9M 〈 Mmax 〈 2.1M. Our results indicate that anisotropy increases the maximum mass M and also its corresponding radius R for a typical strange quark star. Furthermore, our model shows magnetic field and electric charge increase the anisotropy factor △. In fact, △ has a maximum on the surface and this maximum goes up in the presence of magnetic field and electric charge. Finally, we show that anisotropy can be more effective than either magnetic field or electric charge in raising maximum mass of strange quark stars.
基金National Natural Science Foundation of China under Grant Nos.10305001,10475002,and 10435080
文摘K^- condensation and quark deconfinement phase transitions in neutron stars are investigated. We use the modified quark-meson coupling model for hadronic phase and the MIT bag model for quark phase. With the equation of state (EOS) solved self-consistently, we discuss the properties of neutron stars. We find that the EOS of pure hadron matter with condensed K- phase should be ruled out by the redshift for star EX00748-676, while EOS containing unpaired quark matter phase with B1/4 being about 180 MeV could be consistent with both this observation and the best measured mass of star PSR 1913 + 16. But if the recent inferred massive star among Terzan 5 with M 〉 1.68M is confirmed, all the present EOSes with condensed phase and deconfined phase would be ruled out.
文摘We present model atmosphere analysis for a sample of B-type stars in optical region to obtain their fundamental parameters e.g. effective temperature, surface gravities, and rotational velocities. Approximate masses for the sample of stars under study are obtained by comparing the resulted effective temperatures and surface gravities with the evolutionary tracks. Comparison between these masses and the empirical effective temperatures-mass relation revealed good agreement.
文摘In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.
基金Supported by the National Natural Science Foundation of China(Grant Nos. 10973035 and 10673030)the Knowledge Innovation Key Program of the Chinese Academy of Sciences under Grant No. KJCX2-YW-T24
文摘Based on the turbulent convection model (TCM) of Li & Yang, we have studied the characteristics of turbulent convection in the envelopes of 2 and 5M⊙ stars at the red giant branch and asymptotic giant branch phases. The TCM has been successfully applied over the entire convective envelopes, including the convective unstable zone and the overshooting regions. We find that the convective motions become progressively stronger when the stellar models are located farther up along the Hayashi line. In the convective unstable zone, we find that the turbulent correlations are proportional to functions of a common factor (V - V^d)T, which explains similar distributions in those correlations. For the TCM we find that if the obtained stellar temperature structure is close to that of the mixing length theory (MLT), the convective motion will have a much larger velocity and thus be more violent. However, if the turbulent velocity is adjusted to be close to that of the MLT, the superadiabatic convection zone would be much more extended inward, which would lead to a lower effective temperature of the stellar model. For the overshooting distance, we find that the e-folding lengths of the turbulent kinetic energy k in both the top and bottom overshooting regions decrease as the stellar model is progressively located farther up along the Hayashi line, but both the extents of the decrease are not obvious. The overshooting distances of the turbulent correlation /u'rT" are almost the same for the different stellar models with the same set of TCM parameters. For the decay modes of the kinetic energy k, we find that they are very similar for different stellar models based on the same set of TCM parameters, and there is a nearly linear relationship between lg k and In P for different stellar models. When Cs or α increases while the other parameters are fixed, the obtained linearly decaying distance will become longer.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10647116 and 10575140., and the China Postdoctoral Science Foundation under Grant No 2005037175.
文摘A uniform strong magnetic field is considered in calculating the properties of neutron star rotating at the Kepler frequency. The results show that the effect of the magnetic field on the properties of neutron star is evident, and the properties of the neutron stars rotating at the Kepler frequency can be used as a criterion to the equations of states of the neutron star matters.
文摘In this paper, we will explain the relevance of the starant graphs, graphs created by us in the year of 2002. They were basically circulant graphs with a star graph that connects to all the vertices of the circulant graphs from inside of them, but they did not exist as a separate object of study in the year of 2002, as for all we knew. We now know that they can be used to model even social networking interactions, and they do that job better than any other graph we could be trying to use there. With the development of our mathematical tools, lots of conclusions will be made much more believable and therefore will become much more likely to get support from the relevant industries when attached to new queries.
文摘In this paper, we use the well-known Hartle’s perturbation method in order to compute models of differentially rotating neutron stars obeying realistic equations of state. In our numerical treatment, we keep terms up to third order in the angular velocity. We present indicative numerical results for models satisfying a particular differential rotation law. We emphasize on computing the change in mass owing to this differential rotation law.
文摘We implement the so-called “complex-plane strategy” for computing general-relativistic polytropic models of uniformly rotating neutron stars. This method manages the problem by performing all numerical integrations, required within the framework of Hartle’s perturbation method, in the complex plane. We give emphasis on computing corrections up to third order in the angular velocity, and the mass-shedding limit. We also compute the angular momentum, moment of inertia, rotational kinetic energy, and gravitational potential energy of the models considered.
文摘The Rouse-Zimm model with slippage was improved and the basic parameters of modelwere modified to explain the rheological properties of star-type branched polymersolutions. The theoretical results show good agreement with experimental data.