The relationship between the head loss and the discharge and circulation of the conduit of a pump system with low head is an important problem with an obvious influence on the improvement of its hydraulic performance....The relationship between the head loss and the discharge and circulation of the conduit of a pump system with low head is an important problem with an obvious influence on the improvement of its hydraulic performance. The velocity circulation from the pump guide vane makes the relationship more complicated, which has to be understood comprehensively. The results indicate that, under the condition of zero circulation, the head loss of the inlet and outlet conduits is in proportion to the square of discharge. Under the condition that the Reynolds number is satisfied with the resistant square area, the conduit loss is in proportion to the square of discharge for the similar working points with different speeds in a certain rotational speed range, indicating that the pump system efficiency is constant. The outlet conduit loss of design discharge for a pump system with low head depends on the velocity circulation from the guide vane exit, and the relationship between the loss and the circulation is an open curve with an upward direction, meaning that there is an optimal circulation for the loss. Under the condition of various working points for a pump system with low head, the head loss of the outlet conduit is under the cross influence of both the discharge and the circulation. As a result, the relationship between the head loss and the discharge is almost linear, and the mechanism needs to be further studied.展开更多
Based on nuclear power plant(NPP) best-estimate transient analysis with RELAP5 / MOD3 code,the reactor point kinetics model in RELAP5 / MOD3 code is replaced by the two-group,3-D space and time dependent neutron kinet...Based on nuclear power plant(NPP) best-estimate transient analysis with RELAP5 / MOD3 code,the reactor point kinetics model in RELAP5 / MOD3 code is replaced by the two-group,3-D space and time dependent neutron kinetic model,and two-fluid model is replaced by drift flux model.A coupled three-dimensional physics and thermal-hydrodynamics model is used to develop its corresponding computing code,thus simulating natural circulation of single-phase flow for the PWR.In this paper,we report the forward and reverse flow distribution in the inverted U-tubes of the steam generator(SG) under some typical operating conditions in the natural circulation case, and analyze the influence of main coolant pump resistance on the forward and reverse flow distribution.The calculation results show that,the pressure drop between SG inlet and outlet plenum decreases,and the SG inlet and outlet mass flow decrease with an increased main coolant pump resistance,but net mass flux of reverse flow in inverted U-tubes,and the ratio of mass flow in all reverse flow tubes to that of main coolant pipeline increase, meanwhile,the secondary steam load is invariable in this process.展开更多
In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbul...In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.展开更多
Improper design of volute geometry can be the main cause that leads to unsteady pressure pulsation and radial force in pumps. Therefore, it is important to understand the influence of volute geometrical parameters on ...Improper design of volute geometry can be the main cause that leads to unsteady pressure pulsation and radial force in pumps. Therefore, it is important to understand the influence of volute geometrical parameters on hydrodynamic characteristics of pump and the mechanism. However, the existing studies are limited to investigate the influence of only one or two volute geometrical parameters each time, and a systematic study of the influence of the combinations of different volute geometrical parameters on the pump's hydrodynamic characteristics is missing. In this paper, a study on the understanding of the influence of volute geometrical variations on hydrodynamic characteristics of a high speed circulator pump by using computational fluid dynamics(CFD) technology is presented. Five main volute geometrical parameters D3, A8, a0, j0 and Rt are selected and 25 different volute configurations are generated by using design of experiments(DOE) method. The 3D unsteady flow numerical simulations, which are based on the SST k-w turbulence model and sliding mesh technique provided by CFX, are executed on the 25 different volute configurations. The hydraulic performance, pressure pulsation and unsteady radial force inside the pump at design condition are obtained and analyzed. It has been found that volute geometrical parameters D3 and A8 are major influence factors on hydrodynamic characteristics of the pump, while a0, j0 and Rt are minor influence factors. The minimum contribution from both D3 and A8 is 58% on head, and maximum contribution from both D3 and A8 is 90% on pressure pulsation. Regarding the pressure pulsation intensity, two peaks can be found. One is in the tongue area and the other is in the diffusor area. The contributions are around 60% from tongue and 25% from diffusor, respectively. The amplitude of pressure pulsation has a quadratic polynomial functional relationship with respect to D3/D2 and A8/A(10), and fluctuating level of radial force has a quadratic polynomial functional relationship with respect to D3/D2. While for the other volute parameters a0, j0 and Rt, no special function has been found related to pressure pulsation and radial force. The presented work could be a useful guideline in engineering practice when designing a circulator pump with low hydrodynamic force.展开更多
Wave-driven circulation in a reef-lagoon-channel system has significant ecological,geomorphological,and environmental implications.However,there is still research gap in fully understanding the responses of wave-drive...Wave-driven circulation in a reef-lagoon-channel system has significant ecological,geomorphological,and environmental implications.However,there is still research gap in fully understanding the responses of wave-driven circulation in the system to varying incident wave forcing and reef morphology.To better interpret the wave-current process inside an idealized reef-lagoon-channel configuration,a numerical model based on the horizontally two-dimensional(2DH)fully nonlinear Boussinesq equations is presented in this study.The adopted model is firstly validated by a published laboratory dataset for wave height,wave setup and mean current in the system.Subsequently,the impacts of wave forcing(incident wave height,incident wave period,reef-flat wave level)and reef morphological(fore-reef slope,cross-shore reef-flat width,channel width,reef roughness)factors that are not fully considered in the previous laboratory studies are reported through the numerical simulations in this study.Finally,the model is applied to analyze the wave pump efficiency parameter in the system,and an empirical equation to predict this parameter is also proposed.展开更多
Background Outcomes in patients requiring coronary artery bypass graft (CABG) surgery have been improved with devices such as the intra-aortic balloon pump (IABP).Good coronary collateral circulation (CCC) has b...Background Outcomes in patients requiring coronary artery bypass graft (CABG) surgery have been improved with devices such as the intra-aortic balloon pump (IABP).Good coronary collateral circulation (CCC) has been shown to reduce mortality in patients with coronary artery disease (CAD).We aimed to investigate whether poor preoperative CCC grade is a predictor of in-hospital mortality in CABG surgery requiring IABP support.Methods Fifty-five consecutive patients who were undergoing isolated first time on-pump CABG surgery with IABP support were enrolled into this study and CCC of those patients was evaluated.Results Twenty-seven patients had poor CCC and 28 patients had good CCC.In-hospital mortality rate in poor CCC group was significantly higher than good CCC group (14 (50%) vs.4 (13%),P=0.013).Preoperative hemoglobin level (OR:0.752; 95% CI,0.571-0.991,P=0.043),chronic obstructive pulmonary disease (OR:6.731; 95% CI,1.159-39.085,P=0.034) and poor CCC grade (OR:5.750; 95% CI,1.575-20.986,P=0.008) were associated with post-CABG in-hospital mortality.Poor CCC grade (OR:4.853; 95% CI,1.124-20.952,P=0.034) and preoperative hemoglobin level (OR:0.624; 95% CI,0.476-0.954,P=0.026) were independent predictors of in-hospital mortality after CABG.Conclusion Preoperative poor CCC and hemoglobin are predictors of in-hospital mortality after CABG with IABP support.展开更多
文摘The relationship between the head loss and the discharge and circulation of the conduit of a pump system with low head is an important problem with an obvious influence on the improvement of its hydraulic performance. The velocity circulation from the pump guide vane makes the relationship more complicated, which has to be understood comprehensively. The results indicate that, under the condition of zero circulation, the head loss of the inlet and outlet conduits is in proportion to the square of discharge. Under the condition that the Reynolds number is satisfied with the resistant square area, the conduit loss is in proportion to the square of discharge for the similar working points with different speeds in a certain rotational speed range, indicating that the pump system efficiency is constant. The outlet conduit loss of design discharge for a pump system with low head depends on the velocity circulation from the guide vane exit, and the relationship between the loss and the circulation is an open curve with an upward direction, meaning that there is an optimal circulation for the loss. Under the condition of various working points for a pump system with low head, the head loss of the outlet conduit is under the cross influence of both the discharge and the circulation. As a result, the relationship between the head loss and the discharge is almost linear, and the mechanism needs to be further studied.
文摘Based on nuclear power plant(NPP) best-estimate transient analysis with RELAP5 / MOD3 code,the reactor point kinetics model in RELAP5 / MOD3 code is replaced by the two-group,3-D space and time dependent neutron kinetic model,and two-fluid model is replaced by drift flux model.A coupled three-dimensional physics and thermal-hydrodynamics model is used to develop its corresponding computing code,thus simulating natural circulation of single-phase flow for the PWR.In this paper,we report the forward and reverse flow distribution in the inverted U-tubes of the steam generator(SG) under some typical operating conditions in the natural circulation case, and analyze the influence of main coolant pump resistance on the forward and reverse flow distribution.The calculation results show that,the pressure drop between SG inlet and outlet plenum decreases,and the SG inlet and outlet mass flow decrease with an increased main coolant pump resistance,but net mass flux of reverse flow in inverted U-tubes,and the ratio of mass flow in all reverse flow tubes to that of main coolant pipeline increase, meanwhile,the secondary steam load is invariable in this process.
基金Project supported by the Priority Academic Development Program of Jiangsu Higher Education Institutions, ChinaProject(CXZZ12_0680) supported by Postgraduate Innovation Foundation of Jiangsu Province, ChinaProject(12JDG082) supported by the Advanced Talent Foundation of Jiangsu University, China
文摘In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.
基金Supported by National Natural Science Foundation of China(Grant No.51239005)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ15E090004,LQ15E090005)Project of Zhejiang Education,China(Grant No.Y201432222)
文摘Improper design of volute geometry can be the main cause that leads to unsteady pressure pulsation and radial force in pumps. Therefore, it is important to understand the influence of volute geometrical parameters on hydrodynamic characteristics of pump and the mechanism. However, the existing studies are limited to investigate the influence of only one or two volute geometrical parameters each time, and a systematic study of the influence of the combinations of different volute geometrical parameters on the pump's hydrodynamic characteristics is missing. In this paper, a study on the understanding of the influence of volute geometrical variations on hydrodynamic characteristics of a high speed circulator pump by using computational fluid dynamics(CFD) technology is presented. Five main volute geometrical parameters D3, A8, a0, j0 and Rt are selected and 25 different volute configurations are generated by using design of experiments(DOE) method. The 3D unsteady flow numerical simulations, which are based on the SST k-w turbulence model and sliding mesh technique provided by CFX, are executed on the 25 different volute configurations. The hydraulic performance, pressure pulsation and unsteady radial force inside the pump at design condition are obtained and analyzed. It has been found that volute geometrical parameters D3 and A8 are major influence factors on hydrodynamic characteristics of the pump, while a0, j0 and Rt are minor influence factors. The minimum contribution from both D3 and A8 is 58% on head, and maximum contribution from both D3 and A8 is 90% on pressure pulsation. Regarding the pressure pulsation intensity, two peaks can be found. One is in the tongue area and the other is in the diffusor area. The contributions are around 60% from tongue and 25% from diffusor, respectively. The amplitude of pressure pulsation has a quadratic polynomial functional relationship with respect to D3/D2 and A8/A(10), and fluctuating level of radial force has a quadratic polynomial functional relationship with respect to D3/D2. While for the other volute parameters a0, j0 and Rt, no special function has been found related to pressure pulsation and radial force. The presented work could be a useful guideline in engineering practice when designing a circulator pump with low hydrodynamic force.
基金supported by the National Natural Science Foundation of China(Grant Nos.51979013 and 51909013)the National Key Research and Development Program of China(Grant Nos.2021YFC3100502 and 2021YFB2601104).
文摘Wave-driven circulation in a reef-lagoon-channel system has significant ecological,geomorphological,and environmental implications.However,there is still research gap in fully understanding the responses of wave-driven circulation in the system to varying incident wave forcing and reef morphology.To better interpret the wave-current process inside an idealized reef-lagoon-channel configuration,a numerical model based on the horizontally two-dimensional(2DH)fully nonlinear Boussinesq equations is presented in this study.The adopted model is firstly validated by a published laboratory dataset for wave height,wave setup and mean current in the system.Subsequently,the impacts of wave forcing(incident wave height,incident wave period,reef-flat wave level)and reef morphological(fore-reef slope,cross-shore reef-flat width,channel width,reef roughness)factors that are not fully considered in the previous laboratory studies are reported through the numerical simulations in this study.Finally,the model is applied to analyze the wave pump efficiency parameter in the system,and an empirical equation to predict this parameter is also proposed.
文摘Background Outcomes in patients requiring coronary artery bypass graft (CABG) surgery have been improved with devices such as the intra-aortic balloon pump (IABP).Good coronary collateral circulation (CCC) has been shown to reduce mortality in patients with coronary artery disease (CAD).We aimed to investigate whether poor preoperative CCC grade is a predictor of in-hospital mortality in CABG surgery requiring IABP support.Methods Fifty-five consecutive patients who were undergoing isolated first time on-pump CABG surgery with IABP support were enrolled into this study and CCC of those patients was evaluated.Results Twenty-seven patients had poor CCC and 28 patients had good CCC.In-hospital mortality rate in poor CCC group was significantly higher than good CCC group (14 (50%) vs.4 (13%),P=0.013).Preoperative hemoglobin level (OR:0.752; 95% CI,0.571-0.991,P=0.043),chronic obstructive pulmonary disease (OR:6.731; 95% CI,1.159-39.085,P=0.034) and poor CCC grade (OR:5.750; 95% CI,1.575-20.986,P=0.008) were associated with post-CABG in-hospital mortality.Poor CCC grade (OR:4.853; 95% CI,1.124-20.952,P=0.034) and preoperative hemoglobin level (OR:0.624; 95% CI,0.476-0.954,P=0.026) were independent predictors of in-hospital mortality after CABG.Conclusion Preoperative poor CCC and hemoglobin are predictors of in-hospital mortality after CABG with IABP support.