CO_(2) immiscible flooding is an environmentally-friendly and effective method to enhance oil recovery in ultra-low permeability reservoirs.A mathematical model of CO_(2) immiscible flooding was developed,considering ...CO_(2) immiscible flooding is an environmentally-friendly and effective method to enhance oil recovery in ultra-low permeability reservoirs.A mathematical model of CO_(2) immiscible flooding was developed,considering the variation in crude oil viscosity and starting pressure gradient in ultra-low permeability reservoirs based on the non-Darcy percolation theory.The mathematical model and numerical simulator were developed in the C++language to simulate the effects of fluid viscosity,starting pressure gradient,and other physical parameters on the distribution of the oil pressure field,oil saturation field,gas saturation field,oil viscosity field,and oil production.The results showed that the formation pressure and pressure propagation velocity in CO_(2) immiscible flooding were lower than the findings without considering the starting pressure gradient.The formation oil content saturation and the crude oil formation viscosity were higher after the consideration of the starting pressure gradient.The viscosity of crude oil considering the initiation pressure gradient during the formation was higher than that without this gradient,but the yield was lower than that condition.Our novel mathematical models helped the characterization of seepage resistance,revealed the influence of fluid property changes on seepage,improved the mathematical model of oil seepage in immiscible flooding processes,and guided the improvement of crude oil recovery in immiscible flooding processes.展开更多
The effect of the secondary flow on the starting pressure of a second-throat supersonic ejector has been investigated by adapting the height of the secondary flow inlet.The obtained results show that an optimum value ...The effect of the secondary flow on the starting pressure of a second-throat supersonic ejector has been investigated by adapting the height of the secondary flow inlet.The obtained results show that an optimum value of the secondary inlet height exists,and the starting pressure of the ejector becomes a minimum at that condition.Based on the results of the pressure measurements,a qualitative analysis has been made to clarify the flow behavior and the physical meaning of the performance diagram.It appears that the choking phenomenon of the secondary flow plays an important role in the starting process of the ejector.When the secondary inlet height is relatively small,the choked secondary flow and the supersonic primary flow could be employed to protect the static pressure in the suction chamber from being disturbed by the back pressure effect at a certain primary stagnation pressure,which is lower than the starting pressure for the case of the zero-secondary flow.However,as the secondary inlet height increases and exceeds a critical value,the static pressure in the suction chamber rapidly increases,and the starting pressure of the ejector increases accordingly.展开更多
CO_(2) flooding can significantly improve the recovery rate, effectively recover crude oil, and has the advantages of energy saving and emission reduction. At present, most domestic researches on CO_(2) flooding seepa...CO_(2) flooding can significantly improve the recovery rate, effectively recover crude oil, and has the advantages of energy saving and emission reduction. At present, most domestic researches on CO_(2) flooding seepage experiments are field tests in actual reservoirs or simulations with reservoir numerical simulators. Although targeted, the promotion is poor. For the characterization of seepage resistance, there are few studies on the variation law of seepage resistance caused by the combined action in the reservoir. To solve this problem, based on the mechanism of CO_(2), a physical simulation experiment device for CO_(2) non-miscible flooding production manner is designed. The device adopts two displacement schemes, gas-displacing water and gas-displacing oil, it mainly studies the immiscible gas flooding mechanism and oil displacement characteristics based on factors such as formation dip angle, gas injection position, and gas injection rate. It can provide a more accurate development simulation for the actual field application. By studying the variation law of crude oil viscosity and start-up pressure gradient, the characterization method of seepage resistance gradient affected by these two factors in the seepage process is proposed. The field test is carried out for the natural core of the S oilfield, and the seepage resistance is described more accurately. The results show that the advancing front of the gas drive is an arc, and the advancing speed of the gas drive oil front is slower than that of gas drive water;the greater the dip angle, the higher the displacement efficiency;the higher the gas injection rate is, the higher the early recovery rate is, and the lower the later recovery rate is;oil displacement efficiency is lower than water displacement efficiency;taking the actual core of S oilfield as an example, the mathematical representation method of core start-up pressure gradient in low permeability reservoir is established.展开更多
基金the Dongying Science Development Fund Project(Nos.DJ2022009 and DJ2020003)the Shandong Provincial Higher Education Research and Development Program(Science and Technology A Class)(No.J18KA201)+2 种基金the High-level Talent Research Start-up Fund of Shengli College of China University of Petroleum(No.KQ2019-008)the Chunhui Project of Shengli College of China University of Petroleum(No.KY2017004)the Research Cultivation Project of College of Big Data and Basic Science of Shandong Institute of Petroleum and Chemical Technology(No.XYPY2201)which supports are appreciated.
文摘CO_(2) immiscible flooding is an environmentally-friendly and effective method to enhance oil recovery in ultra-low permeability reservoirs.A mathematical model of CO_(2) immiscible flooding was developed,considering the variation in crude oil viscosity and starting pressure gradient in ultra-low permeability reservoirs based on the non-Darcy percolation theory.The mathematical model and numerical simulator were developed in the C++language to simulate the effects of fluid viscosity,starting pressure gradient,and other physical parameters on the distribution of the oil pressure field,oil saturation field,gas saturation field,oil viscosity field,and oil production.The results showed that the formation pressure and pressure propagation velocity in CO_(2) immiscible flooding were lower than the findings without considering the starting pressure gradient.The formation oil content saturation and the crude oil formation viscosity were higher after the consideration of the starting pressure gradient.The viscosity of crude oil considering the initiation pressure gradient during the formation was higher than that without this gradient,but the yield was lower than that condition.Our novel mathematical models helped the characterization of seepage resistance,revealed the influence of fluid property changes on seepage,improved the mathematical model of oil seepage in immiscible flooding processes,and guided the improvement of crude oil recovery in immiscible flooding processes.
文摘The effect of the secondary flow on the starting pressure of a second-throat supersonic ejector has been investigated by adapting the height of the secondary flow inlet.The obtained results show that an optimum value of the secondary inlet height exists,and the starting pressure of the ejector becomes a minimum at that condition.Based on the results of the pressure measurements,a qualitative analysis has been made to clarify the flow behavior and the physical meaning of the performance diagram.It appears that the choking phenomenon of the secondary flow plays an important role in the starting process of the ejector.When the secondary inlet height is relatively small,the choked secondary flow and the supersonic primary flow could be employed to protect the static pressure in the suction chamber from being disturbed by the back pressure effect at a certain primary stagnation pressure,which is lower than the starting pressure for the case of the zero-secondary flow.However,as the secondary inlet height increases and exceeds a critical value,the static pressure in the suction chamber rapidly increases,and the starting pressure of the ejector increases accordingly.
基金the Dongying Science Development Fund Project(Nos.DJ2022009 and DJ2020003)the Shandong Provincial Higher Education Research and Development Program(Science and Technology A Class)(No.J18KA201)+2 种基金the High-level Talent Research Start-up Fund of Shengli College of China University of Petroleum(No.KQ2019-008)the Chunhui Project of Shengli College of China University of Petroleum(No.KY2017004)the Research Cultivation Project of College of Big Data and Basic Science of Shandong Institute of Petroleum and Chemical Technology(No.XYPY2201)which supports are appreciated.
文摘CO_(2) flooding can significantly improve the recovery rate, effectively recover crude oil, and has the advantages of energy saving and emission reduction. At present, most domestic researches on CO_(2) flooding seepage experiments are field tests in actual reservoirs or simulations with reservoir numerical simulators. Although targeted, the promotion is poor. For the characterization of seepage resistance, there are few studies on the variation law of seepage resistance caused by the combined action in the reservoir. To solve this problem, based on the mechanism of CO_(2), a physical simulation experiment device for CO_(2) non-miscible flooding production manner is designed. The device adopts two displacement schemes, gas-displacing water and gas-displacing oil, it mainly studies the immiscible gas flooding mechanism and oil displacement characteristics based on factors such as formation dip angle, gas injection position, and gas injection rate. It can provide a more accurate development simulation for the actual field application. By studying the variation law of crude oil viscosity and start-up pressure gradient, the characterization method of seepage resistance gradient affected by these two factors in the seepage process is proposed. The field test is carried out for the natural core of the S oilfield, and the seepage resistance is described more accurately. The results show that the advancing front of the gas drive is an arc, and the advancing speed of the gas drive oil front is slower than that of gas drive water;the greater the dip angle, the higher the displacement efficiency;the higher the gas injection rate is, the higher the early recovery rate is, and the lower the later recovery rate is;oil displacement efficiency is lower than water displacement efficiency;taking the actual core of S oilfield as an example, the mathematical representation method of core start-up pressure gradient in low permeability reservoir is established.