This paper presents the model of a static synchronous condenser (STATCOM) which is controlled externally by a newly designed power oscillation controller (POC) for the improvements of power system stability and da...This paper presents the model of a static synchronous condenser (STATCOM) which is controlled externally by a newly designed power oscillation controller (POC) for the improvements of power system stability and damping effect of an on line power system. The proposed POC consists of two controllers (power oscillation damping & proportional integral derivative PID & POD). PID parameters have been optimized by Zigler Necles close loop tuning method. Machine excitation has been controller by using excitation controller as required. Both single phase and three phase faults has been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in three steps: without STATCOM, with STATCOM but no externally controlled, STATCOM with POC. Simulation result shows that without STATCOM, the system parameters become unstable during faults. When STATCOM is imposed in the network, then system parameters become stable. Again, when STATCOM is controlled externally by POC controllers, then system voltage & power becomes stable in faster way then without controller It has been observed that the STATCOM ratings are only 20 MVA with controllers and 200 MVA without controllers. Therefore, STATCOM with POC controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. So STATCOM with POC & excitation controllers, the system performance is greatly enhanced.展开更多
Subsynchronous oscillation (SSO) with low amplitude that exceeds cumulative fatigue threshold of the generator shaft frequently could significantly reduce the shaft's service life, which is a new SSO problem that ...Subsynchronous oscillation (SSO) with low amplitude that exceeds cumulative fatigue threshold of the generator shaft frequently could significantly reduce the shaft's service life, which is a new SSO problem that emerges in recent years. According to the real recording oscillograph, the basic reason for frequently over-threshold SSO with low amplitude at multi-power plants was analyzed based on Hulunbuir League system. The sensitivities of the electrical damping to the main electrical parameters in the contributing loop of subsynchronous torsional interaction were calculated. Based on the sensitivities, a simulation method was presented, which was used to excite the same oscillation as the actual case by exerting disturbance on the firing angle. The limitation of wide-band and narrow-band supplementary subsynchronous damping controller (SSDC) for mitigating this kind of SSO was analyzed based on the electromagnetic transient simulation model of Hulunbuir League system. The difference of supplementary excitation damping controller (SEDC) and parallel-form FACTS connected to the generator terminal was compared from the aspects of response time and the ability of damping torque supplying. The analysis indicates that their response time is similar but FACTS has stronger ability of damping torque supplying than SEDC. Time-domain simulation method was used to compare the mitigation effects of SEDC, static var compensator (SVC) and static synchronous compensator (STATCOM). Considering the mitigation effect, the floor space limit of the power plant and so on, STATCOM was considered as the best mitigation measure. A control strategy of cascaded STATCOM for engineering application was presented and the capacity for SSO mitigation as well as output characteristics was analyzed. The analysis indicates that STATCOM using the proposed control strategy has better mitigation effect and output characteristics with smaller capacity.展开更多
文摘This paper presents the model of a static synchronous condenser (STATCOM) which is controlled externally by a newly designed power oscillation controller (POC) for the improvements of power system stability and damping effect of an on line power system. The proposed POC consists of two controllers (power oscillation damping & proportional integral derivative PID & POD). PID parameters have been optimized by Zigler Necles close loop tuning method. Machine excitation has been controller by using excitation controller as required. Both single phase and three phase faults has been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in three steps: without STATCOM, with STATCOM but no externally controlled, STATCOM with POC. Simulation result shows that without STATCOM, the system parameters become unstable during faults. When STATCOM is imposed in the network, then system parameters become stable. Again, when STATCOM is controlled externally by POC controllers, then system voltage & power becomes stable in faster way then without controller It has been observed that the STATCOM ratings are only 20 MVA with controllers and 200 MVA without controllers. Therefore, STATCOM with POC controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. So STATCOM with POC & excitation controllers, the system performance is greatly enhanced.
基金supported by the Key Project of the National 12th Five-Year Research Programme of China (Grant No. 2011BAA01B02)the Fundamental Research Funds for the Central Universities of China (Grant No.12QN37)
文摘Subsynchronous oscillation (SSO) with low amplitude that exceeds cumulative fatigue threshold of the generator shaft frequently could significantly reduce the shaft's service life, which is a new SSO problem that emerges in recent years. According to the real recording oscillograph, the basic reason for frequently over-threshold SSO with low amplitude at multi-power plants was analyzed based on Hulunbuir League system. The sensitivities of the electrical damping to the main electrical parameters in the contributing loop of subsynchronous torsional interaction were calculated. Based on the sensitivities, a simulation method was presented, which was used to excite the same oscillation as the actual case by exerting disturbance on the firing angle. The limitation of wide-band and narrow-band supplementary subsynchronous damping controller (SSDC) for mitigating this kind of SSO was analyzed based on the electromagnetic transient simulation model of Hulunbuir League system. The difference of supplementary excitation damping controller (SEDC) and parallel-form FACTS connected to the generator terminal was compared from the aspects of response time and the ability of damping torque supplying. The analysis indicates that their response time is similar but FACTS has stronger ability of damping torque supplying than SEDC. Time-domain simulation method was used to compare the mitigation effects of SEDC, static var compensator (SVC) and static synchronous compensator (STATCOM). Considering the mitigation effect, the floor space limit of the power plant and so on, STATCOM was considered as the best mitigation measure. A control strategy of cascaded STATCOM for engineering application was presented and the capacity for SSO mitigation as well as output characteristics was analyzed. The analysis indicates that STATCOM using the proposed control strategy has better mitigation effect and output characteristics with smaller capacity.