An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady sta...An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability.展开更多
Carotid angioplasty and stenting (CAS) was developed to be a less invasive and complex procedure compared to carotid endarterectomy (CEA). It has emerged as an alternative for patients who are considered to have high ...Carotid angioplasty and stenting (CAS) was developed to be a less invasive and complex procedure compared to carotid endarterectomy (CEA). It has emerged as an alternative for patients who are considered to have high surgical risks due to medical comorbidities or anatomical high-risk features [1]. The procedure is usually done under local anesthesia with light sedation, with the subsequent expectation of less neurologic injury, venous thromboembolisms, and myocardial infarctions—all well-known clinical risks of undergoing surgical procedures under general anesthesia. CAS, however, carries some increased risks of arterial dissection, dislocation of atherothrombotic debris and embolization to the brain or eye, late embolization due to thrombus formation on the damaged plaque, and bradycardia and hypotension as a result of carotid sinus stimulation. Electroencephalography can detect cerebral ischemia and hypoxia along with measuring hypnotic effects, but has not been reported to be used during CAS to signal impending neurological deficit and allow for intervention to prevent stroke. We report on the use of patient state index (PSI), an electroencephalographic (EEG) derived variable used by SEDLine monitor (Masimo Inc., San Diego, CA) to monitor changes in cerebral blood flow during carotid angioplasty and stenting in an awake patient under local anesthesia. PSI was developed to measure the level of hypnosis and sedation during anesthesia and in the ICU. The PSI is based on quantitative electroencephalogram features, recorded from anterior and posterior scalp sites, as input to a multivariate algorithm that quantifies the most probable level of anesthesia or sedation. The PSI is reported as a range from 0 to 100, with decreasing values indicating increasing levels of anesthesia or sedation. Adequate depth of anesthesia is reflected by PSI value of 25 - 50, and a fully awake state by a PSI of 100 [2]. Other EEG analysis techniques have been explored to detect changes in cerebral blood flow during carotid surgery [3], such as entropy described by Khan and Ozcan in his recent work entitled Disagreement in Bilateral State Entropy Values in Carotid Artery Disease [4], but there are no previous reports of the use of PSI during procedural sedation in carotid angioplasty and stenting in an awake patient.展开更多
The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) o...The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.展开更多
Based on the characteristics of atom types, Hall's electrotopological state indices (En) are calculated for 165 nonionic organic compounds. On the basis of the characteristics of substituent and conjugated matrix, ...Based on the characteristics of atom types, Hall's electrotopological state indices (En) are calculated for 165 nonionic organic compounds. On the basis of the characteristics of substituent and conjugated matrix, a novel molecular structure parameter (G) is defined and calculated for 165 molecules in this paper. En and G show good structural selectivity for organic molecules. G, a satisfactory relationship between bioconcentration factor (BCF) and En, is expressed as: 1gBCF = -0.283 + 1.246G + 0.079E42 + 0.351E9- 0.063E17 (n' = 122, R = 0.967, F = 425.636, s = 0.394), which could provide estimation and prediction for the lgBCF of nonionic organic chemicals. Furthermore, the model is examined to validate overall robustness with Jackknife tests, and the independent variables in model do not exist cross correlation with VIF. All these regression results show that the new parameter G and electrotopological state index have good rationality and efficiency. It is concluded that the En and G will be used widely in quantitative structure-property/activity relationship (QSPR/QSAR) research.展开更多
2008年金融危机后,全球经济基本步入“新常态”.为应对“新常态”,中国政府采取措施,使全国经济呈现新“外貌”.针对新常态背景下房地产和股市状况,以国房景气指数代表中国房地产行业发展情况、上证综合指数收盘价表示股市行情,建立Y A...2008年金融危机后,全球经济基本步入“新常态”.为应对“新常态”,中国政府采取措施,使全国经济呈现新“外貌”.针对新常态背景下房地产和股市状况,以国房景气指数代表中国房地产行业发展情况、上证综合指数收盘价表示股市行情,建立Y A R 模型进行分析.之后引入货币供给量,重新建立模型,经脉冲响应、方差分解分析,得出上证综指、国房景气指数主要受自身行业的影响;货币供给量给房市和股市造成的影响度大于两个市场相互间的影响程度;观察短期内房地产行业、股市两者之间相互的贡献度,房市对股市的贡献度更大.展开更多
A new computation scheme proposed to tackle commensurate problems is devel- oped by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, u...A new computation scheme proposed to tackle commensurate problems is devel- oped by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, usually referred to as the failure surface, are obtained from transformation of an interval variable to a normalized one. In order to minimize the computational cost, two algorithms for optimizing the calculation steps have been proposed. The monotonicity of the objective function can be determined from narrowing the scope of interval variables in normalized infinite space by incorporating the algorithms into the computational scheme. Two examples are used to illustrate the operation and computational efficiency of the approach. The results of these examples show that the proposed algorithms can greatly reduce the computation complexity without sacrificing the computational accuracy. The advantage of the proposed scheme can be even more efficient for analyzing sophistic structures.展开更多
In developing countries, lakes being important sources of water supply and fishing are vulnerable to anthropogenic impact, yet knowledge of their trophic state in relation to changes in species composition, and enviro...In developing countries, lakes being important sources of water supply and fishing are vulnerable to anthropogenic impact, yet knowledge of their trophic state in relation to changes in species composition, and environmental variables, are limited. This study is aimed at assessing the trophic status of lakes by monthly sampling of three lakes located along the floodplain of Cross River, Nigeria between January 2008 and December 2009. Samples were analyzed for water quality parameters, zooplankton and phytoplankton composition and distribution. Results were subjected to community structure analysis using trophic state index, species richness and diversity indexes. Essential primary productivity nutrients, nitrates, sulphates and phosphates were highest in Ejagham Lake, and lowest in Ikot Okpora Lake. Dominant phytoplankton species Oscillatoria lacustria (Cyanophyceae), Cyclotella operculata (Bacilliarophyceae) and zooplankton Keratella tropica, Keratella quadrata, Filinia longiseta, Branchionus anguillaris and Trichocerca pusilla (rotifers) all typical of eutrophic communities were recorded in high densities in Ejagham Lake in both dry and wet seasons while Cladocerans, Bosmina longirostris and Moina micrura and copepods considered indicators of oligotrophy and mesotrophy were recorded in large numbers in Ikot Okpora and Obubra Lakes respectively. Higher values of species richness, Evenness and Shannon-Wiener diversity index for both phytoplankton and zooplankton, were recorded in Ejagham Lake during the dry season than wet. Also values of the Trophic state index were generally highest at the Ejagham Lake in the savanna region of the floodplain and lowest at Ikot Okpora in the forest region of the floodplain. Forest region is therefore a limiting factor in the productivity of lakes in the tropics.展开更多
Background:Global spread and impact of the coronavirus disease 2019(COVID-19)pandemic are determined to a large extent,by resistance to the pandemic and public response of all countries in the world;while a country...Background:Global spread and impact of the coronavirus disease 2019(COVID-19)pandemic are determined to a large extent,by resistance to the pandemic and public response of all countries in the world;while a country's resistance and response are in turn determined by its political and socio economic conditions.To inform future disease prevention and control,we analyzed global data to exam the relationship between state vulnerabilities and COVID-19 incidences and deaths.Methods:Vulnerability was measured using the Fragile States Index(FSI).FSI is created by the Fund for Peace to assess levels of fragility for individual countries.Total FSI score and scores for 12 specific indicators were used as the predictor variables.Outcome variables were national cumulative COVID-19 cases and deaths up to September 16,2020,derived from the World Health Organization.Cumulative incidence rates were computed using 2019 National population derived from the World Bank,and case fatality rates were computed as the ratio of deaths/COVID-19 cases.Countries with incomplete data were excluded,yielding a final sample of 146 countries.Multivariate regression was used to examine the association between the predictor and the outcome measures.Results:There were dramatic cross-country variations in both FSI and COVID-19 epidemiological measurements.FSI total scores were negatively associated with both COVID-19 cumulative incidence rates(β=-0.0135,P<0.001)and case fatality rates(β=-0.0147,P<0.05).Of the 12 FSI indicators,three negatively associated with COVID-19 incidences were E1(Economic Decline and Poverty),E3(Human Flight and Brain Drain),and S2(Refugees and Internally Displaced Persons);two positively associated were P1(State Legitimacy)and X1(External Intervention).With regard to association with case fatality rates,C1(Security Apparatus)was positive,and P3(Human Rights and Rule of Law)and X1 was negative.Conclusion:With FSI measures by the Fund of Peace,overall,more fragile countries are less likely to be affected by the COVID-19 pandemic,and even if affected,death rates were lower.However,poor in state legitimacy and lack of external intervention are risk for COVID-19 infection and lack of security apparatus is risky for COVID-19 death.Implications of the study findings are discussed and additional studies are needed to examine the mechanisms underpinning these relationships.展开更多
The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure a...The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure and composition of materials. A qualitative relation between the refractive index and some atomic parameters of materials was proposed and demonstrated by some oxide optical crystals. A parameter P=r~-/F=r~-/(r~+ΔxD) is defined, in which Δx is the difference of the electronegativities between cations and anions in the materials and r~+ and r~- are the radii of cations and anions respectively. On the other hand, the factor D was introduced to describe the effect of mass difference of the ions. It is demonstrated by both theoretical discussion and experimental data that refractive index is a decreasing function of parameter P. The relation may be useful for the investigation of optical materials.展开更多
Dynamic nonlinearities of C70/toluene solution are measured and analysed by an improved picosecond timeresolved pump-probe system based on a nonlinear imaging technique with phase object. The photophysical parameters ...Dynamic nonlinearities of C70/toluene solution are measured and analysed by an improved picosecond timeresolved pump-probe system based on a nonlinear imaging technique with phase object. The photophysical parameters are determined by the five-level model, which is adopted to interpret the experimental data. The change of refraction index per unit density of the excited state obtained by a numerically simulation is a critical factor to determine the nonlinear behaviour of C70 in picosecond time regime.展开更多
Mapping ecological states in semi-arid rangelands is crucial for effective land management and conservation efforts because it identifies difference in the ecological conditions across a landscape. This study presents...Mapping ecological states in semi-arid rangelands is crucial for effective land management and conservation efforts because it identifies difference in the ecological conditions across a landscape. This study presents an innovative approach for mapping two ecological states, Large Shrub Grass (LSG) and Large Shrub Eroded (LSE), within the Sandy Loam Upland and Deep (SLUD) ecological sites using a combination of drone and satellite data. The methodology leverages the Largest Patch Index (LPI) as a proxy metric to estimate eroded areas and classify ecological states. The integration of unmanned aerial vehicle (UAV) data with satellite-based remote sensing provides a scalable approach that can benefit various stakeholders involved in rangeland management. The study demonstrates the potential of this methodology by generating spatial layers at the landscape scale to inform on the state of rangeland ecosystems. The workflow showcases the power of remote sensing technology to map ecological states and addresses limitations in spatial coverage by integrating UAV and satellite data. By utilizing the bare ground LPI metric, which indicates the connectedness of bare ground, the methodology enables the classification of ecological states at a regional scale. This cost-effective approach potentially offers a standardized and reproducible method applicable across different sites and regions. The accuracy of the classification process is evaluated by comparing the results to ground-based polygons, dirt roads, and water locations. While the model performs well in identifying eroded areas, misclassifications occur in regions with mixed vegetation cover or low biomass. Future research should focus on incorporating temporal information from historical remote sensing archives to improve understanding of ecological state dynamics. Additionally, validation efforts can be enhanced by incorporating more ground-truth data and testing the methodology in diverse rangeland areas. The workflow serves as a blueprint for scaling up ecological states mapping in similar semi-arid rangelands. Further work should involve refining the approach through additional validation and exploring new remote sensing datasets. The methodology can be replicated in other regions to inform land management decisions, promote sustainable resource use, and advance the field of ecological states mapping.展开更多
本文设计了由不对称半圆柱对阵列组成的全介质超构表面,获得了两个高品质因子的准连续域束缚态模式(quasi-bound states in the continuum,QBIC).通过选择不同形式的对称破缺,在近红外频段均可产生两个稳健的QBIC,并且二者的谐振波长、...本文设计了由不对称半圆柱对阵列组成的全介质超构表面,获得了两个高品质因子的准连续域束缚态模式(quasi-bound states in the continuum,QBIC).通过选择不同形式的对称破缺,在近红外频段均可产生两个稳健的QBIC,并且二者的谐振波长、品质因子、偏振依赖等表现出不同的特性.模拟计算表明,通过测量两个QBIC的谐振波长,能够实现折射率和温度的双参数传感;通过调节不对称参数,利用QBIC的品质因子依赖于不对称参数的二次方反比关系,理论上能够提高品质因子到任意的数值,从而实现传感性能的提升和调节.该超构表面的折射率传感灵敏度、品质因子和优值分别达到194.7 nm/RIU,45829和8197,其温度传感灵敏度达到24 pm/℃.展开更多
文摘An effective power quality prediction for regional power grid can provide valuable references and contribute to the discovering and solving of power quality problems. So a predicting model for power quality steady state index based on chaotic theory and least squares support vector machine (LSSVM) is proposed in this paper. At first, the phase space reconstruction of original power quality data is performed to form a new data space containing the attractor. The new data space is used as training samples for the LSSVM. Then in order to predict power quality steady state index accurately, the particle swarm algorithm is adopted to optimize parameters of the LSSVM model. According to the simulation results based on power quality data measured in a certain distribution network, the model applies to several indexes with higher forecasting accuracy and strong practicability.
文摘Carotid angioplasty and stenting (CAS) was developed to be a less invasive and complex procedure compared to carotid endarterectomy (CEA). It has emerged as an alternative for patients who are considered to have high surgical risks due to medical comorbidities or anatomical high-risk features [1]. The procedure is usually done under local anesthesia with light sedation, with the subsequent expectation of less neurologic injury, venous thromboembolisms, and myocardial infarctions—all well-known clinical risks of undergoing surgical procedures under general anesthesia. CAS, however, carries some increased risks of arterial dissection, dislocation of atherothrombotic debris and embolization to the brain or eye, late embolization due to thrombus formation on the damaged plaque, and bradycardia and hypotension as a result of carotid sinus stimulation. Electroencephalography can detect cerebral ischemia and hypoxia along with measuring hypnotic effects, but has not been reported to be used during CAS to signal impending neurological deficit and allow for intervention to prevent stroke. We report on the use of patient state index (PSI), an electroencephalographic (EEG) derived variable used by SEDLine monitor (Masimo Inc., San Diego, CA) to monitor changes in cerebral blood flow during carotid angioplasty and stenting in an awake patient under local anesthesia. PSI was developed to measure the level of hypnosis and sedation during anesthesia and in the ICU. The PSI is based on quantitative electroencephalogram features, recorded from anterior and posterior scalp sites, as input to a multivariate algorithm that quantifies the most probable level of anesthesia or sedation. The PSI is reported as a range from 0 to 100, with decreasing values indicating increasing levels of anesthesia or sedation. Adequate depth of anesthesia is reflected by PSI value of 25 - 50, and a fully awake state by a PSI of 100 [2]. Other EEG analysis techniques have been explored to detect changes in cerebral blood flow during carotid surgery [3], such as entropy described by Khan and Ozcan in his recent work entitled Disagreement in Bilateral State Entropy Values in Carotid Artery Disease [4], but there are no previous reports of the use of PSI during procedural sedation in carotid angioplasty and stenting in an awake patient.
基金Projects(51278216,51308241)supported by the National Natural Science Foundation of ChinaProject(2013BS010)supported by the Funds of Henan University of Technology for High-level Talents,China
文摘The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.
基金the State Key Laboratory of Pollution Control and Reuse of China Project Proposal (PCRRF07009)the University Natural Science Foundation of Jiangsu Province (05KJD150221)Natural Science Incubation Foundation of Xuzhou Normal University (05PLY04)
文摘Based on the characteristics of atom types, Hall's electrotopological state indices (En) are calculated for 165 nonionic organic compounds. On the basis of the characteristics of substituent and conjugated matrix, a novel molecular structure parameter (G) is defined and calculated for 165 molecules in this paper. En and G show good structural selectivity for organic molecules. G, a satisfactory relationship between bioconcentration factor (BCF) and En, is expressed as: 1gBCF = -0.283 + 1.246G + 0.079E42 + 0.351E9- 0.063E17 (n' = 122, R = 0.967, F = 425.636, s = 0.394), which could provide estimation and prediction for the lgBCF of nonionic organic chemicals. Furthermore, the model is examined to validate overall robustness with Jackknife tests, and the independent variables in model do not exist cross correlation with VIF. All these regression results show that the new parameter G and electrotopological state index have good rationality and efficiency. It is concluded that the En and G will be used widely in quantitative structure-property/activity relationship (QSPR/QSAR) research.
文摘2008年金融危机后,全球经济基本步入“新常态”.为应对“新常态”,中国政府采取措施,使全国经济呈现新“外貌”.针对新常态背景下房地产和股市状况,以国房景气指数代表中国房地产行业发展情况、上证综合指数收盘价表示股市行情,建立Y A R 模型进行分析.之后引入货币供给量,重新建立模型,经脉冲响应、方差分解分析,得出上证综指、国房景气指数主要受自身行业的影响;货币供给量给房市和股市造成的影响度大于两个市场相互间的影响程度;观察短期内房地产行业、股市两者之间相互的贡献度,房市对股市的贡献度更大.
基金supported by the National Natural Science Foundation of China (No.10972084)
文摘A new computation scheme proposed to tackle commensurate problems is devel- oped by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, usually referred to as the failure surface, are obtained from transformation of an interval variable to a normalized one. In order to minimize the computational cost, two algorithms for optimizing the calculation steps have been proposed. The monotonicity of the objective function can be determined from narrowing the scope of interval variables in normalized infinite space by incorporating the algorithms into the computational scheme. Two examples are used to illustrate the operation and computational efficiency of the approach. The results of these examples show that the proposed algorithms can greatly reduce the computation complexity without sacrificing the computational accuracy. The advantage of the proposed scheme can be even more efficient for analyzing sophistic structures.
文摘In developing countries, lakes being important sources of water supply and fishing are vulnerable to anthropogenic impact, yet knowledge of their trophic state in relation to changes in species composition, and environmental variables, are limited. This study is aimed at assessing the trophic status of lakes by monthly sampling of three lakes located along the floodplain of Cross River, Nigeria between January 2008 and December 2009. Samples were analyzed for water quality parameters, zooplankton and phytoplankton composition and distribution. Results were subjected to community structure analysis using trophic state index, species richness and diversity indexes. Essential primary productivity nutrients, nitrates, sulphates and phosphates were highest in Ejagham Lake, and lowest in Ikot Okpora Lake. Dominant phytoplankton species Oscillatoria lacustria (Cyanophyceae), Cyclotella operculata (Bacilliarophyceae) and zooplankton Keratella tropica, Keratella quadrata, Filinia longiseta, Branchionus anguillaris and Trichocerca pusilla (rotifers) all typical of eutrophic communities were recorded in high densities in Ejagham Lake in both dry and wet seasons while Cladocerans, Bosmina longirostris and Moina micrura and copepods considered indicators of oligotrophy and mesotrophy were recorded in large numbers in Ikot Okpora and Obubra Lakes respectively. Higher values of species richness, Evenness and Shannon-Wiener diversity index for both phytoplankton and zooplankton, were recorded in Ejagham Lake during the dry season than wet. Also values of the Trophic state index were generally highest at the Ejagham Lake in the savanna region of the floodplain and lowest at Ikot Okpora in the forest region of the floodplain. Forest region is therefore a limiting factor in the productivity of lakes in the tropics.
基金This paper was supported by the National Natural Science Foundation of China(No.72042014).
文摘Background:Global spread and impact of the coronavirus disease 2019(COVID-19)pandemic are determined to a large extent,by resistance to the pandemic and public response of all countries in the world;while a country's resistance and response are in turn determined by its political and socio economic conditions.To inform future disease prevention and control,we analyzed global data to exam the relationship between state vulnerabilities and COVID-19 incidences and deaths.Methods:Vulnerability was measured using the Fragile States Index(FSI).FSI is created by the Fund for Peace to assess levels of fragility for individual countries.Total FSI score and scores for 12 specific indicators were used as the predictor variables.Outcome variables were national cumulative COVID-19 cases and deaths up to September 16,2020,derived from the World Health Organization.Cumulative incidence rates were computed using 2019 National population derived from the World Bank,and case fatality rates were computed as the ratio of deaths/COVID-19 cases.Countries with incomplete data were excluded,yielding a final sample of 146 countries.Multivariate regression was used to examine the association between the predictor and the outcome measures.Results:There were dramatic cross-country variations in both FSI and COVID-19 epidemiological measurements.FSI total scores were negatively associated with both COVID-19 cumulative incidence rates(β=-0.0135,P<0.001)and case fatality rates(β=-0.0147,P<0.05).Of the 12 FSI indicators,three negatively associated with COVID-19 incidences were E1(Economic Decline and Poverty),E3(Human Flight and Brain Drain),and S2(Refugees and Internally Displaced Persons);two positively associated were P1(State Legitimacy)and X1(External Intervention).With regard to association with case fatality rates,C1(Security Apparatus)was positive,and P3(Human Rights and Rule of Law)and X1 was negative.Conclusion:With FSI measures by the Fund of Peace,overall,more fragile countries are less likely to be affected by the COVID-19 pandemic,and even if affected,death rates were lower.However,poor in state legitimacy and lack of external intervention are risk for COVID-19 infection and lack of security apparatus is risky for COVID-19 death.Implications of the study findings are discussed and additional studies are needed to examine the mechanisms underpinning these relationships.
文摘The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure and composition of materials. A qualitative relation between the refractive index and some atomic parameters of materials was proposed and demonstrated by some oxide optical crystals. A parameter P=r~-/F=r~-/(r~+ΔxD) is defined, in which Δx is the difference of the electronegativities between cations and anions in the materials and r~+ and r~- are the radii of cations and anions respectively. On the other hand, the factor D was introduced to describe the effect of mass difference of the ions. It is demonstrated by both theoretical discussion and experimental data that refractive index is a decreasing function of parameter P. The relation may be useful for the investigation of optical materials.
基金Project supported by the National Natural Science Fundation of China(Grant No.90922007)
文摘Dynamic nonlinearities of C70/toluene solution are measured and analysed by an improved picosecond timeresolved pump-probe system based on a nonlinear imaging technique with phase object. The photophysical parameters are determined by the five-level model, which is adopted to interpret the experimental data. The change of refraction index per unit density of the excited state obtained by a numerically simulation is a critical factor to determine the nonlinear behaviour of C70 in picosecond time regime.
文摘Mapping ecological states in semi-arid rangelands is crucial for effective land management and conservation efforts because it identifies difference in the ecological conditions across a landscape. This study presents an innovative approach for mapping two ecological states, Large Shrub Grass (LSG) and Large Shrub Eroded (LSE), within the Sandy Loam Upland and Deep (SLUD) ecological sites using a combination of drone and satellite data. The methodology leverages the Largest Patch Index (LPI) as a proxy metric to estimate eroded areas and classify ecological states. The integration of unmanned aerial vehicle (UAV) data with satellite-based remote sensing provides a scalable approach that can benefit various stakeholders involved in rangeland management. The study demonstrates the potential of this methodology by generating spatial layers at the landscape scale to inform on the state of rangeland ecosystems. The workflow showcases the power of remote sensing technology to map ecological states and addresses limitations in spatial coverage by integrating UAV and satellite data. By utilizing the bare ground LPI metric, which indicates the connectedness of bare ground, the methodology enables the classification of ecological states at a regional scale. This cost-effective approach potentially offers a standardized and reproducible method applicable across different sites and regions. The accuracy of the classification process is evaluated by comparing the results to ground-based polygons, dirt roads, and water locations. While the model performs well in identifying eroded areas, misclassifications occur in regions with mixed vegetation cover or low biomass. Future research should focus on incorporating temporal information from historical remote sensing archives to improve understanding of ecological state dynamics. Additionally, validation efforts can be enhanced by incorporating more ground-truth data and testing the methodology in diverse rangeland areas. The workflow serves as a blueprint for scaling up ecological states mapping in similar semi-arid rangelands. Further work should involve refining the approach through additional validation and exploring new remote sensing datasets. The methodology can be replicated in other regions to inform land management decisions, promote sustainable resource use, and advance the field of ecological states mapping.
文摘本文设计了由不对称半圆柱对阵列组成的全介质超构表面,获得了两个高品质因子的准连续域束缚态模式(quasi-bound states in the continuum,QBIC).通过选择不同形式的对称破缺,在近红外频段均可产生两个稳健的QBIC,并且二者的谐振波长、品质因子、偏振依赖等表现出不同的特性.模拟计算表明,通过测量两个QBIC的谐振波长,能够实现折射率和温度的双参数传感;通过调节不对称参数,利用QBIC的品质因子依赖于不对称参数的二次方反比关系,理论上能够提高品质因子到任意的数值,从而实现传感性能的提升和调节.该超构表面的折射率传感灵敏度、品质因子和优值分别达到194.7 nm/RIU,45829和8197,其温度传感灵敏度达到24 pm/℃.