The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field th...The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.展开更多
Electronic structure and spin-related state coupling at ferromagnetic material (FM)/MgO (FM = Fe, CoFe, CoFeB) interfaces under biaxial strain are evaluated using the first-principles calculations. The CoFeB/MgO i...Electronic structure and spin-related state coupling at ferromagnetic material (FM)/MgO (FM = Fe, CoFe, CoFeB) interfaces under biaxial strain are evaluated using the first-principles calculations. The CoFeB/MgO interface, which is su- perior to the Fe/MgO and CoFe/MgO interfaces, can markedly maintain stable and effective coupling channels for majority- spin A1 state under large biaxial strain. Bonding interactions between Fe, Co, and B atoms and the electron transfer between Bloch states are responsible for the redistribution of the majority-spin A1 state, directly influencing the coupling effect for the strained interfaces. Layer-projected wave function of the majority-spin Al state suggests slower decay rate and more stable transport property in the CoFeB/MgO interface, which is expected to maintain a higher tunneling magnetoresistance (TMR) value under large biaxial strain. This work reveals the internal mechanism for the state coupling al strained FM/MgO interfaces. This study may provide some references to the design and manufacturing of magnetic tunnel .junctions with high tunneling magnetoresistance effect.展开更多
This paper investiages the secondary Bjerknes force for two oscillating bubbles in various pressure amplitudes in a concentration of 95% sulfuric acid. The equilibrium radii of the bubbles are assumed to be smaller th...This paper investiages the secondary Bjerknes force for two oscillating bubbles in various pressure amplitudes in a concentration of 95% sulfuric acid. The equilibrium radii of the bubbles are assumed to be smaller than 10 μm at a frequency of 37 kHz in various strong driving acoustical fields around 2.0 bars (1 bar=10^5 Pa). The secondary Bjerknes force is investigated in uncoupled and coupled states between the bubbles, with regard to the quasi-adiabatic model for the bubble interior. It finds that the value of the secondary Bjerknes force depends on the driven pressure of sulfuric acid and its amount would be increased by liquid pressure amplitude enhancement. The results show that the repulsion area of the interaction force would be increased by increasing the driven pressure because of nonlinear oscillation of bubbles.展开更多
The quantum anomalous Hall effect is characterized by a quantized Hall resistance with a vanishing longitudinal resistance.Many experiments reported the quantization of the Hall resistance,which is always accompanied ...The quantum anomalous Hall effect is characterized by a quantized Hall resistance with a vanishing longitudinal resistance.Many experiments reported the quantization of the Hall resistance,which is always accompanied by a non-vanishing longitudinal resistance that is several k?.Meanwhile,the non-vanishing longitudinal resistance exhibits a universal exponential decay with the increase in magnetic field.We propose that the coupling of chiral edge states,which has not been properly evaluated in the previous theories,can give rise to the non-vanishing longitudinal resistance.The coupling between the chiral edges states along the opposite boundaries can be assisted by magnetic domains or defects inside the sample bulk,which has been already identified in recent experiments.Our theory provides a potential mechanism to understand the experimental result in both magnetic topological insulator and moirésuperlattice systems.展开更多
We propose the generation of photonic EPR state from quadratic waveguide array. Both the propagation constant and the nonlinearity in the array are designed to possess a periodical modulation along the propagation dir...We propose the generation of photonic EPR state from quadratic waveguide array. Both the propagation constant and the nonlinearity in the array are designed to possess a periodical modulation along the propagation direction.This ensures that the photon pairs can be generated efficiently through the quasi-phase-matching spontaneous parametric down conversion by holding the spatial EPR entanglement in the fashion of correlated position and anticorrelated momentum. The Schmidt number which denotes the degree of EPR entanglement is calculated and it can approach a high value when the number of illuminated waveguide channels and the length of the waveguide array are properly chosen. These results suggest the quadratic waveguide array as a compact platform for engineering photonic quantum states in a high-dimensional Hilbert space.展开更多
文摘The massive vector bosons Z o, W ± and the scalar Higgs-boson H o assumed in weak interaction theory, but also the six quarks required in strong interactions are well understood in an alternative quantum field theory of fermions and bosons: Z o and W ± as well as all quark-antiquark states (here only the tt¯state is discussed) are described by bound states with scalar coupling between their massless constituents and have a structure similar to leptons. However, the scalar Higgs-boson H o corresponds to a state with vector coupling between the elementary constituents. Similar scalar states are expected also in the mass region of the mesons ω (0.782 GeV) - Υ ( 9.46 GeV). The underlying calculations can be run on line using the Web-address https://h2909473.stratoserver.net.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0400801)the National Natural Science Foundation of China(Grant Nos.61774128,61674124,11604275,11304257,and 61227009)+1 种基金the Natural Science Foundation of Fujian Province of China(Grant Nos.2017J01012,2014J01026,2016J01037,and 2015J01028)the Fundamental Research Funds for the Central Universities,China(Grant Nos.20720150027,20720160044,20720160122,20720170085,20720170012,and 20720150033)
文摘Electronic structure and spin-related state coupling at ferromagnetic material (FM)/MgO (FM = Fe, CoFe, CoFeB) interfaces under biaxial strain are evaluated using the first-principles calculations. The CoFeB/MgO interface, which is su- perior to the Fe/MgO and CoFe/MgO interfaces, can markedly maintain stable and effective coupling channels for majority- spin A1 state under large biaxial strain. Bonding interactions between Fe, Co, and B atoms and the electron transfer between Bloch states are responsible for the redistribution of the majority-spin A1 state, directly influencing the coupling effect for the strained interfaces. Layer-projected wave function of the majority-spin Al state suggests slower decay rate and more stable transport property in the CoFeB/MgO interface, which is expected to maintain a higher tunneling magnetoresistance (TMR) value under large biaxial strain. This work reveals the internal mechanism for the state coupling al strained FM/MgO interfaces. This study may provide some references to the design and manufacturing of magnetic tunnel .junctions with high tunneling magnetoresistance effect.
基金Project supported by Sharif University of Technology
文摘This paper investiages the secondary Bjerknes force for two oscillating bubbles in various pressure amplitudes in a concentration of 95% sulfuric acid. The equilibrium radii of the bubbles are assumed to be smaller than 10 μm at a frequency of 37 kHz in various strong driving acoustical fields around 2.0 bars (1 bar=10^5 Pa). The secondary Bjerknes force is investigated in uncoupled and coupled states between the bubbles, with regard to the quasi-adiabatic model for the bubble interior. It finds that the value of the secondary Bjerknes force depends on the driven pressure of sulfuric acid and its amount would be increased by liquid pressure amplitude enhancement. The results show that the repulsion area of the interaction force would be increased by increasing the driven pressure because of nonlinear oscillation of bubbles.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074108,and 12147102)Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0568)+4 种基金supported by the National Natural Science Foundation of China(Grant No.12074107)the Program of Outstanding Young and Middle-aged Scientific and Technological Innovation Team of Colleges and Universities in Hubei Province(Grant No.T2020001)the Innovation Group Project of the Natural Science Foundation of Hubei Province of China(Grant No.2022CFA012)supported by the Würzburg-Dresden Cluster of Excellence ct.qmat,EXC2147(Grant No.390858490)the Deutsche Forschungsgemeinschaft(Grant No.SFB 1170)。
文摘The quantum anomalous Hall effect is characterized by a quantized Hall resistance with a vanishing longitudinal resistance.Many experiments reported the quantization of the Hall resistance,which is always accompanied by a non-vanishing longitudinal resistance that is several k?.Meanwhile,the non-vanishing longitudinal resistance exhibits a universal exponential decay with the increase in magnetic field.We propose that the coupling of chiral edge states,which has not been properly evaluated in the previous theories,can give rise to the non-vanishing longitudinal resistance.The coupling between the chiral edges states along the opposite boundaries can be assisted by magnetic domains or defects inside the sample bulk,which has been already identified in recent experiments.Our theory provides a potential mechanism to understand the experimental result in both magnetic topological insulator and moirésuperlattice systems.
基金Supported by the State Key Program for Basic Research in China under Grant No.2012CB921802 the National Natural Science Foundations of China under Grant Nos.91321312,11321063 and 11422438
文摘We propose the generation of photonic EPR state from quadratic waveguide array. Both the propagation constant and the nonlinearity in the array are designed to possess a periodical modulation along the propagation direction.This ensures that the photon pairs can be generated efficiently through the quasi-phase-matching spontaneous parametric down conversion by holding the spatial EPR entanglement in the fashion of correlated position and anticorrelated momentum. The Schmidt number which denotes the degree of EPR entanglement is calculated and it can approach a high value when the number of illuminated waveguide channels and the length of the waveguide array are properly chosen. These results suggest the quadratic waveguide array as a compact platform for engineering photonic quantum states in a high-dimensional Hilbert space.