This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from un...This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from unknown disturbances system. SMC is a well-known nonlinear system control algorithm for its anti-disturbances capability, while the chattering on switch surface is one stiff question. To dissipate the well-known chattering of SMC, the switching manifold is proposed by presetting a Hurwitz matrix which is deducted from the state feedback matrix. Meanwhile, the best switching surface is achieved by use of eigenvalues of the Hurwitz matrix. The state feedback control parameters are not only applied to control the states of AUV but also connected with coefficients of switching surface. The convergence of the proposed control law is verified by Lyapunov function and the robust character is validated by the Matlab platform of one AUV model.展开更多
An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type ...An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type three-level atom with two bimodal cavities. The entangled cavity state is reconstructed with only one atom interacting with the two cavities successively.展开更多
In the 2016 EAST experimental campaign,a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive,through an...In the 2016 EAST experimental campaign,a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive,through an integrated control of the wall conditioning,plasma configuration,divertor heat flux,particle exhaust,impurity management,and effective coupling of multiple RF heating and current drive sources at high injected power.The plasma current(Ip - 0.45 MA) was fully-noninductively driven(Vloop 〈 0.0 V) by a combination of-2.5 MW LHW,-0.4 MW ECH and -0.8 MW ICRF.This result demonstrates the progress of physics and technology studies on EAST,and will benefit the physics basis for steady state operation of ITER and CFETR.展开更多
For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon...For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack.展开更多
We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing p...We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing parameter decreases, tanhθ → e-kt tanh θ, but also the second-mode vacuum state evolves into a chaotic state exp{bbln[(1 - e-2kt) tanh2 θ]}. The outcome state is no more a pure state, but an entangled mixed state.展开更多
In this paper, we introduce a flexible model for the control and measurement of NAMRs (nanomechanical resonators). We obtain the free Hamiltonian of the dcSQUID (direct current superconducting quantum interference ...In this paper, we introduce a flexible model for the control and measurement of NAMRs (nanomechanical resonators). We obtain the free Hamiltonian of the dcSQUID (direct current superconducting quantum interference device) and the interaction Hamiltonian between these two NAMRs and the dc-SQUID by introducing the annihilation and creation operators under the rotating wave approximation. We can treat the mode of the dc-SQUID as a classical field. In the Heisenberg picture, the generation of two-mode squeezed states of two nanomechanical resonators is shown by their collective coordinate and momentum operators.展开更多
We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properti...We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.展开更多
We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is...We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is presented by combining a symmetrical beamsplitter, a parametric down-conversion and a polarizer. After making a single-mode quadrature amplitude measurement, the remaining three modes are kept in entanglement. And its applications are also discussed.展开更多
The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rota...The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rotation technique. When the pump power reaches the mode-locked threshold, the metastable pulse train with a tunable repetition rate is obtained in the transition from the continuous wave state to the passive mode-locked state via proper adjustment of the polarization controller. A simpie model has been established to explain the experimental observation.展开更多
A scheme for teleporting two mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleported qubit is two mode photon entangled states, and two pairs of EPR pair are used ...A scheme for teleporting two mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleported qubit is two mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors with the help of classical information.展开更多
The result of one-mode quadrature-amplitude measurement for some generalized two-mode squeezed states has been studied by virtue of the entangled state representation of the corresponding two-mode squeezing operators....The result of one-mode quadrature-amplitude measurement for some generalized two-mode squeezed states has been studied by virtue of the entangled state representation of the corresponding two-mode squeezing operators. We find that the remaining fleld-mode simultaneously collapses to the single-mode squeezed state with more stronger squeezing. The measurement result caused by a single-mode squeezed state projector is also calculated, which indicates quantum entanglement in squeezing.展开更多
In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variation...In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.展开更多
For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of o...For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.展开更多
We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents...We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.展开更多
We introduce the coordinate-dependent one-and two-mode squeezing transformations and discuss theproperties of the corresponding one-and two-mode squeezed states.We show that the coordinate-dependent one-and two-mode s...We introduce the coordinate-dependent one-and two-mode squeezing transformations and discuss theproperties of the corresponding one-and two-mode squeezed states.We show that the coordinate-dependent one-and two-mode squeezing transformations can be constructed by the combination of two transformations,a coordinate-dependentdisplacement followed by the standard squeezed transformation.Such a decomposition turns a nonlinear problem intoa linear one because all the calculations involving the nonlinear one- and two-mode squeezed transformation have beenshown to be able to reduce to those only concerning the standard one- and two-mode squeezed states.展开更多
A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the...A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.展开更多
We explore the theoretical possibility of extending the usual squeezed state to those produced by nonlinear singlemode squeezing operators. We derive the wave functions of exp[-(ig/2)((1-X2)1/2P + P(1-X2)1/2)...We explore the theoretical possibility of extending the usual squeezed state to those produced by nonlinear singlemode squeezing operators. We derive the wave functions of exp[-(ig/2)((1-X2)1/2P + P(1-X2)1/2)]|0 in the coordinate representation. A new operator's disentangling formula is derived as a by-product.展开更多
Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya-Perot optical cavity via radiation-pressure are investigated by linearized quantum Langevin equation. We work in the resolved s...Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya-Perot optical cavity via radiation-pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity.展开更多
The local vibration mode(LVM)of carbon acceptor in GaAs is studied by measuring directly the change in LVM absorption with a NIC-170 SX FT-IR spectrometer.The change in the charge state of carbon acceptor and the temp...The local vibration mode(LVM)of carbon acceptor in GaAs is studied by measuring directly the change in LVM absorption with a NIC-170 SX FT-IR spectrometer.The change in the charge state of carbon acceptor and the temperature dependence of the LVM absorption were investigated also.The contents of the impurities other than carbon were estimated by secondary ion mass spectrometry.It is observed that the frequency,the spectral form and the integrated absorption of the LVM are not affected by the change in charge state of car- bon acceptor.展开更多
基金supported by National Basic Research Program of China (973 Program) (No. 6138101004-3)Key Project of Innovation Knowledge of Chinese Academy of Sciences (No. YYYJ-0917)Innovation Knowledge of Chinese Academy of Sciences (No.O7A6210601)
文摘This paper presents a new method to eliminate the chattering of state feedback sliding mode control (SMC) law for the mobile control of an autonomous underwater vehicle (AUV) which is nonlinear and suffers from unknown disturbances system. SMC is a well-known nonlinear system control algorithm for its anti-disturbances capability, while the chattering on switch surface is one stiff question. To dissipate the well-known chattering of SMC, the switching manifold is proposed by presetting a Hurwitz matrix which is deducted from the state feedback matrix. Meanwhile, the best switching surface is achieved by use of eigenvalues of the Hurwitz matrix. The state feedback control parameters are not only applied to control the states of AUV but also connected with coefficients of switching surface. The convergence of the proposed control law is verified by Lyapunov function and the robust character is validated by the Matlab platform of one AUV model.
基金supported by the National Natural Science Foundation of China (Grant No 10674025)Funds from Key Laboratory of Quantum Information, University of Science and Technology of Chinathe Department Funds of Fuzhou University of China (Grant No 2007-XY-15)
文摘An alternative scheme to approximately conditionally teleport entangled two-mode cavity state without Bell state measurement in cavity QED is proposed. The scheme is based on the resonant interaction of a ladder-type three-level atom with two bimodal cavities. The entangled cavity state is reconstructed with only one atom interacting with the two cavities successively.
基金supported by the National Magnetic Conlinement Fusion Science Program of China(Nos.2015GB102000 and 2015GB103000)
文摘In the 2016 EAST experimental campaign,a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive,through an integrated control of the wall conditioning,plasma configuration,divertor heat flux,particle exhaust,impurity management,and effective coupling of multiple RF heating and current drive sources at high injected power.The plasma current(Ip - 0.45 MA) was fully-noninductively driven(Vloop 〈 0.0 V) by a combination of-2.5 MW LHW,-0.4 MW ECH and -0.8 MW ICRF.This result demonstrates the progress of physics and technology studies on EAST,and will benefit the physics basis for steady state operation of ITER and CFETR.
基金Project supported by the Shanghai Jiaotong University (SJTU) Young Teacher Foundation,China (Grant No A2831B)the SJTU Participating in Research Projects (PRPs),China (Grant No T03011030)the National Natural Science Foundation of China(Grant No 60472018)
文摘For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11047133 and 10647133)the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 2009GQS0080 and 2010GQW0027)the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos. GJJ11339 and GJJ10097)
文摘We explore how a two-mode squeezed vacuum state sechθeab tanh θ[00) evolves when it undergoes a single- mode amplitude dissipative channel with rate of decay k. We find that in this process not only the squeezing parameter decreases, tanhθ → e-kt tanh θ, but also the second-mode vacuum state evolves into a chaotic state exp{bbln[(1 - e-2kt) tanh2 θ]}. The outcome state is no more a pure state, but an entangled mixed state.
基金supported by the Natural Science Foundation of Hebei Province (No. A2006000299)KeyProgram of Science and Technolgy of Hebei Province (No. 06547003D-1)
文摘In this paper, we introduce a flexible model for the control and measurement of NAMRs (nanomechanical resonators). We obtain the free Hamiltonian of the dcSQUID (direct current superconducting quantum interference device) and the interaction Hamiltonian between these two NAMRs and the dc-SQUID by introducing the annihilation and creation operators under the rotating wave approximation. We can treat the mode of the dc-SQUID as a classical field. In the Heisenberg picture, the generation of two-mode squeezed states of two nanomechanical resonators is shown by their collective coordinate and momentum operators.
基金Project supported by the National Natural Science Foundation of China (Grant No 19874020), the Natural Science Foundation of Hunan Province, China (Grant No 05JJ30004), and the Scientific Research Fund of Hunan Provincial Education Department, China(Grant No 03c543).
文摘We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter p on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.
基金supported by the Natural Science Foundation of Jiangxi Province,China (Grant No 2007GZW0171)the Foundation of Education Department of Jiangxi Province,China (Grant No [2007] 136)
文摘We introduce a new kind of four-mode continuous variable entangled state in Fock space. The completeness relation and the partly nonorthonormal property of such a state are proven. The scheme to generate this state is presented by combining a symmetrical beamsplitter, a parametric down-conversion and a polarizer. After making a single-mode quadrature amplitude measurement, the remaining three modes are kept in entanglement. And its applications are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074078)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20094407110002)+1 种基金the Key Program for Scientific and Technological Innovations of Higher Education Institutes in Guangdong Province,China(Grant No.cxzd1011)the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(Grant No.C10183)
文摘The transition state between the continuous wave region and the mode-locked region in a passively mode-locked erbium-doped fibre ring laser has been experimentally observed by utilizing the nonlinear polarization rotation technique. When the pump power reaches the mode-locked threshold, the metastable pulse train with a tunable repetition rate is obtained in the transition from the continuous wave state to the passive mode-locked state via proper adjustment of the polarization controller. A simpie model has been established to explain the experimental observation.
文摘A scheme for teleporting two mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleported qubit is two mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors with the help of classical information.
文摘The result of one-mode quadrature-amplitude measurement for some generalized two-mode squeezed states has been studied by virtue of the entangled state representation of the corresponding two-mode squeezing operators. We find that the remaining fleld-mode simultaneously collapses to the single-mode squeezed state with more stronger squeezing. The measurement result caused by a single-mode squeezed state projector is also calculated, which indicates quantum entanglement in squeezing.
基金Supported by the National Natural Science Foundation of China(No.11603024)
文摘In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11264018 and 60978009)the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023)+1 种基金the National Basic Research Project of China (Grant No. 2011CBA00200)the Young Talents Foundation of Jiangxi Normal University,China
文摘For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374007).
文摘We have considered two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode nonclassical state fields and investigated the correlation of the supercurrents in the two rings using the normalized correlation function CAB. We show that when the parameter c~ is very small for the separable state with the density matrix ρ = {│α,-α) (α,-α│ + │-α, α) (-α, α│}/2 and entangled coherent state {(ECS) [u) = N1(│α, -α) + │-α, α)} fields, the dynamic behaviours of the normalized correlation function CAB are similar, but it is quite different for the entangled coherent state │u') = N2(│α,-α) - │-α, α)} field. When the parameter α is very large, the dynamic behaviours of CAB are almost the same for the separable state, entangled coherent state │u) and [u'〉 fields. For the two-mode squeezed vacuum state field the maximum of CAB increases monotonically with the squeezing parameter γ, and as γ→ ∞ , CAB→ 1. This means that the supercurrents in the two rings A and B are quantum mechanically correlated perfectly. It is concluded that not all the quantum correlations in the two-mode nonclassical state field can be transferred to the supercurrents; and the transfer depends on the state of the two-mode nonclassical state field prepared.
文摘We introduce the coordinate-dependent one-and two-mode squeezing transformations and discuss theproperties of the corresponding one-and two-mode squeezed states.We show that the coordinate-dependent one-and two-mode squeezing transformations can be constructed by the combination of two transformations,a coordinate-dependentdisplacement followed by the standard squeezed transformation.Such a decomposition turns a nonlinear problem intoa linear one because all the calculations involving the nonlinear one- and two-mode squeezed transformation have beenshown to be able to reduce to those only concerning the standard one- and two-mode squeezed states.
基金This project was supported by the National Natural Science Foundation of China(69874008)
文摘A new proportional-integral (PI) sliding surface is designed for a class of uncertain nonlinear state-delayed systems. Based on this, an adaptive sliding mode controller (ASMC) is synthesized, which guarantees the occurrence of sliding mode even when the system is undergoing parameter uncertainties and external disturbance. The resulting sliding mode has the same order as the original system, so that it becomes easy to solve the H∞ control problem by designing a memoryless H∞ state feedback controller. A delay-dependent sufficient condition is proposed in terms of linear matrix inequalities (LMIs), which guarantees the sliding mode robust asymptotically stable and has a noise attenuation level γ in an H∞ sense. The admissible state feedback controller can be found by solving a sequential minimization problem subject to LMI constraints by applying the cone complementary linearization method. This design scheme combines the strong robustness of the sliding mode control with the H∞ norm performance. A numerical example is given to illustrate the effectiveness of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)
文摘We explore the theoretical possibility of extending the usual squeezed state to those produced by nonlinear singlemode squeezing operators. We derive the wave functions of exp[-(ig/2)((1-X2)1/2P + P(1-X2)1/2)]|0 in the coordinate representation. A new operator's disentangling formula is derived as a by-product.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10647132 and 11104113)the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 10A100)
文摘Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya-Perot optical cavity via radiation-pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity.
文摘The local vibration mode(LVM)of carbon acceptor in GaAs is studied by measuring directly the change in LVM absorption with a NIC-170 SX FT-IR spectrometer.The change in the charge state of carbon acceptor and the temperature dependence of the LVM absorption were investigated also.The contents of the impurities other than carbon were estimated by secondary ion mass spectrometry.It is observed that the frequency,the spectral form and the integrated absorption of the LVM are not affected by the change in charge state of car- bon acceptor.