This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay ...This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.展开更多
This paper develops a novel event-triggered optimal control approach based on state observer and neural network(NN)for nonlinear continuous-time systems.Firstly,the authors propose an online algorithm with critic and ...This paper develops a novel event-triggered optimal control approach based on state observer and neural network(NN)for nonlinear continuous-time systems.Firstly,the authors propose an online algorithm with critic and actor NNs to solve the optimal control problem and provide an event-triggered method to reduce communication and computation burdens.Moreover,the authors design weight estimation for critic and actor NNs based on gradient descent method and achieve uniformly ultimate boundednesss(UUB)estimation results.Furthermore,by using bounded NN weight estimation and dead-zone operator,the authors propose a triggering condition,prove the asymptotic stability of closed-loop system from Lyapunov stability perspective,and exclude the Zeno behavior.Finally,the authors provide a numerical example to illustrate the effectiveness of the proposed method.展开更多
A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with...A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.展开更多
This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.B...This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.展开更多
In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neu...In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neural networks are used to approximate unknown internal dynamics and an adaptive NN state observer is developed to estimate immeasurable states.Under the framework of the backstepping design,by employing the actor-critic architecture and constructing the tan-type Barrier Lyapunov function(BLF),the virtual and actual optimal controllers are developed.In order to accomplish optimal control effectively,a simplified reinforcement learning(RL)algorithm is designed by deriving the updating laws from the negative gradient of a simple positive function,instead of employing existing optimal control methods.In addition,to ensure that all the signals in the closed-loop system are bounded and the output can follow the reference signal within a bounded error,all state variables are confined within their compact sets all times.Finally,a simulation example is given to illustrate the effectiveness of the proposed control strategy.展开更多
Achieving accurate control of main steam temperature is a very difficult task in thermal power plants due to the large process lag (8 to 10 minutes) associated with the superheater system and there exists a deviatio...Achieving accurate control of main steam temperature is a very difficult task in thermal power plants due to the large process lag (8 to 10 minutes) associated with the superheater system and there exists a deviation of ±10 ℃ in closed loop control. A control oriented boiler model and an appropriate optimal control strategy are the essential tools for improving the accuracy of this control system. This paper offers a comprehensive integrated 8th order mathematical model for the boiler and a Kalman Filter based state predictive controller for effectively controlling the main steam temperature within ± 2 ℃ and to enhance the efficiency of the boiler. It is proved through simulation that the predictive controller method with Kalman filter state estimator and predictor is the most appropriate one for the optimization of main steam temperature control as compared to other methods. This control system is under field implementation in a 210 MW boiler of a thermal power plant.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province(BK20201159).
文摘This paper provides an improved model-free adaptive control(IMFAC)strategy for solving the surface vessel trajectory tracking issue with time delay and restricted disturbance.Firstly,the original nonlinear time-delay system is transformed into a structure consisting of an unknown residual term and a parameter term with control inputs using a local compact form dynamic linearization(local-CFDL).To take advantage of the resulting structure,use a discrete-time extended state observer(DESO)to estimate the unknown residual factor.Then,according to the study,the inclusion of a time delay has no effect on the linearization structure,and an improved control approach is provided,in which DESO is used to adjust for uncertainties.Furthermore,a DESO-based event-triggered model-free adaptive control(ET-DESO-MFAC)is established by designing event-triggered conditions to assure Lyapunov stability.Only when the system’s indicator fulfills the provided event-triggered condition will the control input signal be updated;otherwise,the control input will stay the same as it is at the last trigger moment.A coordinate compensation approach is developed to reduce the steady-state inaccuracy of trajectory tracking.Finally,simulation experiments are used to assess the effectiveness of the proposed technique for trajectory tracking.
基金supported by the National Natural Science Foundation of China under Grant Nos.61973002,62103003the Anhui Provincial Natural Science Foundation under Grant No.2008085J32+2 种基金the National Postdoctoral Program for Innovative Talents under Grant No.BX20180346the General Financial Grant from the China Postdoctoral Science Foundation under Grant No.2019M660834the Excellent Young Talents Program in Universities of Anhui Province under Grant No.gxyq2019002.
文摘This paper develops a novel event-triggered optimal control approach based on state observer and neural network(NN)for nonlinear continuous-time systems.Firstly,the authors propose an online algorithm with critic and actor NNs to solve the optimal control problem and provide an event-triggered method to reduce communication and computation burdens.Moreover,the authors design weight estimation for critic and actor NNs based on gradient descent method and achieve uniformly ultimate boundednesss(UUB)estimation results.Furthermore,by using bounded NN weight estimation and dead-zone operator,the authors propose a triggering condition,prove the asymptotic stability of closed-loop system from Lyapunov stability perspective,and exclude the Zeno behavior.Finally,the authors provide a numerical example to illustrate the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(6202530361973147)the LiaoNing Revitalization Talents Program(XLYC1907050)。
文摘A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints.The fuzzy logic system is used to design the approximator,which deals with uncertain and continuous functions in the process of backstepping design.The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint,but also mixes the states and errors to directly constrain the state,reducing the conservativeness of the constraint satisfaction condition.Considering that the states in most nonlinear systems are immeasurable,a fuzzy adaptive states observer is constructed to estimate the unknown states.Combined with adaptive backstepping technique,an adaptive fuzzy output feedback control method is proposed.The proposed control method ensures that all signals in the closed-loop system are bounded,and that the tracking error converges to a bounded tight set without violating the full state constraint.The simulation results prove the effectiveness of the proposed control scheme.
文摘This study proposes a scheme for state estimation and,consequently,fault diagnosis in nonlinear systems.Initially,an optimal nonlinear observer is designed for nonlinear systems subject to an actuator or plant fault.By utilizing Lyapunov's direct method,the observer is proved to be optimal with respect to a performance function,including the magnitude of the observer gain and the convergence time.The observer gain is obtained by using approximation of Hamilton-Jacobi-Bellman(HJB)equation.The approximation is determined via an online trained neural network(NN).Next a class of affine nonlinear systems is considered which is subject to unknown disturbances in addition to fault signals.In this case,for each fault the original system is transformed to a new form in which the proposed optimal observer can be applied for state estimation and fault detection and isolation(FDI).Simulation results of a singlelink flexible joint robot(SLFJR)electric drive system show the effectiveness of the proposed methodology.
基金This work was supported by National Natural Science Foundation of China(61822307,61773188).
文摘In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neural networks are used to approximate unknown internal dynamics and an adaptive NN state observer is developed to estimate immeasurable states.Under the framework of the backstepping design,by employing the actor-critic architecture and constructing the tan-type Barrier Lyapunov function(BLF),the virtual and actual optimal controllers are developed.In order to accomplish optimal control effectively,a simplified reinforcement learning(RL)algorithm is designed by deriving the updating laws from the negative gradient of a simple positive function,instead of employing existing optimal control methods.In addition,to ensure that all the signals in the closed-loop system are bounded and the output can follow the reference signal within a bounded error,all state variables are confined within their compact sets all times.Finally,a simulation example is given to illustrate the effectiveness of the proposed control strategy.
文摘Achieving accurate control of main steam temperature is a very difficult task in thermal power plants due to the large process lag (8 to 10 minutes) associated with the superheater system and there exists a deviation of ±10 ℃ in closed loop control. A control oriented boiler model and an appropriate optimal control strategy are the essential tools for improving the accuracy of this control system. This paper offers a comprehensive integrated 8th order mathematical model for the boiler and a Kalman Filter based state predictive controller for effectively controlling the main steam temperature within ± 2 ℃ and to enhance the efficiency of the boiler. It is proved through simulation that the predictive controller method with Kalman filter state estimator and predictor is the most appropriate one for the optimization of main steam temperature control as compared to other methods. This control system is under field implementation in a 210 MW boiler of a thermal power plant.