ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their applicati...ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their application conditions is proposed,which considers the combination of open circuit voltage(OCV)and internal resistance correction.First,the optimal order of equivalent circuit model is analyzed and selected,and the monotonic and stable mapping relationships between OCV and SOC,as well as between ohmic internal resistance and SOC are determined.Then,a joint estimation algorithm for battery model parameters and SOC is estab-lished,and a joint SOC correction strategy based on OCV and ohmic internal resistance is established.The test results show that OCV correction is reliable when polarization is small,that the ohmic internal resistance correction is reliable when the current fluctuation is large,and that the maximum absolute error of SOC estimation of the proposed method is not more than 2.6%.展开更多
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial...The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.展开更多
A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was appli...A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied to identify the structure and antecedent parameters of the model.The least squares algorithm was utilized to determine the consequent parameters.Validation results show that this model can provide accurate SOC estimation for the lithium-ion battery and satisfy the requirement for practical electric vehicle applications.展开更多
The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging...The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries,thereby improving discharge efficiency and extending cycle life.In this study,the key lithium-ion battery SOC estimation technologies are summarized.First,the research status of lithium-ion battery modeling is introduced.Second,the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed.Third,the development status and advantages and disadvantages of SOC estimation methods are summarized.Finally,the current research problems and prospects for development trends are summarized.展开更多
Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy man...Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy management of LIBs in electric transports for all-climate and long-life operation requires the accurate estimation of state of charge(SOC)and capacity in real-time.This study proposes a multistage model fusion algorithm to co-estimate SOC and capacity.Firstly,based on the assumption of a normal distribution,the mean and variance of the residual error from the model at different ageing levels are used to calculate the weight for the establishment of a fusion model with stable parameters.Secondly,a differential error gain with forward-looking ability is introduced into a proportional–integral observer(PIO)to accelerate convergence speed.Thirdly,a fusion algorithm is developed by combining a multistage model and proportional–integral–differential observer(PIDO)to co-estimate SOC and capacity under a complex application environment.Fourthly,the convergence and anti-noise performance of the fusion algorithm are discussed.Finally,the hardware-in-the-loop platform is set up to verify the performance of the fusion algorithm.The validation results of different aged LIBs over a wide range of temperature show that the presented fusion algorithm can realize a high-accuracy estimation of SOC and capacity with the relative errors within 2%and 3.3%,respectively.展开更多
Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention ...Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.展开更多
The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their correspon...The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.展开更多
In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, ...In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate.Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded.展开更多
Battery management systems (BMS) must estimate the state-of-charge (SOC) of the battery accurately to prolong its lifetime and ensure a reliable operation. Since batteries have a wide range of applications, the SOC es...Battery management systems (BMS) must estimate the state-of-charge (SOC) of the battery accurately to prolong its lifetime and ensure a reliable operation. Since batteries have a wide range of applications, the SOC estimation requirements and methods vary from an application to another. This paper compares two SOC estimation methods, namely extended Kalman filters (EKF) and artificial neural networks (ANN). EKF is a nonlinear optimal estimator that is used to estimate the inner state of a nonlinear dynamic system using a state-space model. On the other hand, ANN is a mathematical model that consists of interconnected artificial neurons inspired by biological neural networks and is used to predict the output of a dynamic system based on some historical data of that system. A pulse-discharge test was performed on a commercial lithium-ion (Li-ion) battery cell in order to collect data to evaluate those methods. Results are presented and compared.展开更多
In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Bas...In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Based on advanced WNN,the SOC estimation model of a lithium-ion power battery for the HEV is first established.Then,the convergence of the advanced WNN algorithm is proved by mathematical deduction.Finally,using an adequate data sample of various charging and discharging of HEV batteries,the neural network is trained.The simulation results indicate that the proposed algorithm can effectively decrease the estimation errors of the lithium-ion power battery SOC from the range of ±8% to ±1.5%,compared with the traditional SOC estimation methods.展开更多
To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation alg...To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation algorithm is proposed by combining the online parameter identification method and the modified covariance extended Kalman filter(MVEKF)algorithm.Based on the parameters identified on line with the multiple forgetting factors recursive least squares methods,the newly-established algorithm recalculates the covariance in the iterative process with the modified estimation and updates the process gain which is used for the next state estimation to decrease errors of the filter.Experiments including constant pulse discharging and the dynamic stress test(DST)demonstrate that compared with the EKF algorithm,the MVEKF algorithm produces fewer estimation errors and can reduce the errors to 5%at most under the complex charging and discharging conditions of batteries.In the charging process under the DST condition,the EKF produces a larger deviation and lacks stability,while the MVEKF algorithm can estimate SOC stably and has a strong robustness.Therefore,the established MVEKF algorithm is suitable for complex and changeable working conditions of batteries for electric vehicles.展开更多
This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The m...This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The model parameters are estimated by searching least square error optimization algorithm.Precisely defined by this method,the model parameters allow to accurately determine the capacity of the battery,which in turn allows to specify the SOC prediction value used as a basis for the SOH value.Application of the extended Kalman filter(EKF)removes the need of prior known initial SOC,and applying the fuzzy logic helps to eliminate the measurement and process noise.Simulation results obtained during the urban dynamometer driving schedule(UDDS)test show that the maximum error in estimation of the battery SOC is 0.66%.Battery capacity is estimate by offline updated Kalman filter,and then SOH will be predicted.The maximum error in estimation of the battery capacity is 1.55%.展开更多
On basis of traditional battery performance model, paper analyzed the advantage and disadvantage of SOC estimation methods, introduced Adaptive Neuro-Fuzzy Inference Systems which integrated artificial neural network ...On basis of traditional battery performance model, paper analyzed the advantage and disadvantage of SOC estimation methods, introduced Adaptive Neuro-Fuzzy Inference Systems which integrated artificial neural network and fuzzy logic have predicted SOC of battery. It’s a battery residual capacity model with more generalization ability, adaptability and high precision. By analyzing the battery charge and discharge process, the key parameters of SOC are determined and the experimental model is modified in MATLAB platform.Experimental results show that the difference of SOC prediction and actual SOC is below 3%.The model can reflect the characteristics curve of the battery. SOC estimation algorithm can meet the requirements for precision. The results have a high practical value.展开更多
A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)ba...A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)balancing strategy with a reduced switching-frequency(RSF)is proposed in this paper.The proposed RSF algorithm not only reduces the switching losses,but also features good balancing performance both in the unbalanced and balanced initial states.The results are verified by extensive simulations in MATLAB/Simulink surroundings.展开更多
考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM...考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。展开更多
基金supported by the Key Science and Technology Project of China Southern Power Grid Corporation:Sodium-ion Battery Energy Storage System Multi-Scenario Demonstration Application Project-Topic 2 Research on Safety Application Technology of Sodium-ion Battery Energy Storage(STKJXM 20210104)the National Natural Science Foundation of China under Grant 52307233.
文摘ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their application conditions is proposed,which considers the combination of open circuit voltage(OCV)and internal resistance correction.First,the optimal order of equivalent circuit model is analyzed and selected,and the monotonic and stable mapping relationships between OCV and SOC,as well as between ohmic internal resistance and SOC are determined.Then,a joint estimation algorithm for battery model parameters and SOC is estab-lished,and a joint SOC correction strategy based on OCV and ohmic internal resistance is established.The test results show that OCV correction is reliable when polarization is small,that the ohmic internal resistance correction is reliable when the current fluctuation is large,and that the maximum absolute error of SOC estimation of the proposed method is not more than 2.6%.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA110303)the Beijing Municipal Science & Technology Project,China (Grant No. Z111100064311001)
文摘The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.
基金Sponsored by the National High Technology Research and Development Program of China("863"Program)(2003AA501800)
文摘A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied to identify the structure and antecedent parameters of the model.The least squares algorithm was utilized to determine the consequent parameters.Validation results show that this model can provide accurate SOC estimation for the lithium-ion battery and satisfy the requirement for practical electric vehicle applications.
基金supported by research on value model and technology application of patent operation of science and technology project(52094020000U)National Natural Science Foundation of China(52177193).
文摘The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries,thereby improving discharge efficiency and extending cycle life.In this study,the key lithium-ion battery SOC estimation technologies are summarized.First,the research status of lithium-ion battery modeling is introduced.Second,the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed.Third,the development status and advantages and disadvantages of SOC estimation methods are summarized.Finally,the current research problems and prospects for development trends are summarized.
基金This work was supported by the National Key Research and Development Program of China(2017YFB0103802)the National Natural Science Foundation of China(51922006 and 51707011).
文摘Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy management of LIBs in electric transports for all-climate and long-life operation requires the accurate estimation of state of charge(SOC)and capacity in real-time.This study proposes a multistage model fusion algorithm to co-estimate SOC and capacity.Firstly,based on the assumption of a normal distribution,the mean and variance of the residual error from the model at different ageing levels are used to calculate the weight for the establishment of a fusion model with stable parameters.Secondly,a differential error gain with forward-looking ability is introduced into a proportional–integral observer(PIO)to accelerate convergence speed.Thirdly,a fusion algorithm is developed by combining a multistage model and proportional–integral–differential observer(PIDO)to co-estimate SOC and capacity under a complex application environment.Fourthly,the convergence and anti-noise performance of the fusion algorithm are discussed.Finally,the hardware-in-the-loop platform is set up to verify the performance of the fusion algorithm.The validation results of different aged LIBs over a wide range of temperature show that the presented fusion algorithm can realize a high-accuracy estimation of SOC and capacity with the relative errors within 2%and 3.3%,respectively.
基金Supported by National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2013BAG14B01)
文摘Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.
基金the financial support from the China Scholarship Council(CSC)(No.202207550010)。
文摘The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61004048 and 61201010)
文摘In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate.Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded.
文摘Battery management systems (BMS) must estimate the state-of-charge (SOC) of the battery accurately to prolong its lifetime and ensure a reliable operation. Since batteries have a wide range of applications, the SOC estimation requirements and methods vary from an application to another. This paper compares two SOC estimation methods, namely extended Kalman filters (EKF) and artificial neural networks (ANN). EKF is a nonlinear optimal estimator that is used to estimate the inner state of a nonlinear dynamic system using a state-space model. On the other hand, ANN is a mathematical model that consists of interconnected artificial neurons inspired by biological neural networks and is used to predict the output of a dynamic system based on some historical data of that system. A pulse-discharge test was performed on a commercial lithium-ion (Li-ion) battery cell in order to collect data to evaluate those methods. Results are presented and compared.
基金The National Natural Science Foundation of China (No.60904023)
文摘In order to improve the estimation accuracy of the battery's state of charge(SOC) for the hybrid electric vehicle(HEV),the SOC estimation algorithm based on advanced wavelet neural network(WNN) is presented.Based on advanced WNN,the SOC estimation model of a lithium-ion power battery for the HEV is first established.Then,the convergence of the advanced WNN algorithm is proved by mathematical deduction.Finally,using an adequate data sample of various charging and discharging of HEV batteries,the neural network is trained.The simulation results indicate that the proposed algorithm can effectively decrease the estimation errors of the lithium-ion power battery SOC from the range of ±8% to ±1.5%,compared with the traditional SOC estimation methods.
基金The National Natural Science Foundation of China(No.51375086)。
文摘To offset the defect of the traditional state of charge(SOC)estimation algorithm of lithium battery for electric vehicle and considering the complex working conditions of lithium batteries,an online SOC estimation algorithm is proposed by combining the online parameter identification method and the modified covariance extended Kalman filter(MVEKF)algorithm.Based on the parameters identified on line with the multiple forgetting factors recursive least squares methods,the newly-established algorithm recalculates the covariance in the iterative process with the modified estimation and updates the process gain which is used for the next state estimation to decrease errors of the filter.Experiments including constant pulse discharging and the dynamic stress test(DST)demonstrate that compared with the EKF algorithm,the MVEKF algorithm produces fewer estimation errors and can reduce the errors to 5%at most under the complex charging and discharging conditions of batteries.In the charging process under the DST condition,the EKF produces a larger deviation and lacks stability,while the MVEKF algorithm can estimate SOC stably and has a strong robustness.Therefore,the established MVEKF algorithm is suitable for complex and changeable working conditions of batteries for electric vehicles.
基金supported by the High Technology Research and Development Program of Jilin(20130204021GX)the Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)+2 种基金the National Natural Science Foundation of China(61520106008,U1564207,61503149)the Education Department of Jilin Province of China(2016430)the Graduate Innovation Fund of Jilin University(2016030)
基金Open Fund Project of State Key Laboratory of Large Electric Transmission Systems and Equipment Technology(No.SKLLDJ042017005)。
文摘This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The model parameters are estimated by searching least square error optimization algorithm.Precisely defined by this method,the model parameters allow to accurately determine the capacity of the battery,which in turn allows to specify the SOC prediction value used as a basis for the SOH value.Application of the extended Kalman filter(EKF)removes the need of prior known initial SOC,and applying the fuzzy logic helps to eliminate the measurement and process noise.Simulation results obtained during the urban dynamometer driving schedule(UDDS)test show that the maximum error in estimation of the battery SOC is 0.66%.Battery capacity is estimate by offline updated Kalman filter,and then SOH will be predicted.The maximum error in estimation of the battery capacity is 1.55%.
文摘On basis of traditional battery performance model, paper analyzed the advantage and disadvantage of SOC estimation methods, introduced Adaptive Neuro-Fuzzy Inference Systems which integrated artificial neural network and fuzzy logic have predicted SOC of battery. It’s a battery residual capacity model with more generalization ability, adaptability and high precision. By analyzing the battery charge and discharge process, the key parameters of SOC are determined and the experimental model is modified in MATLAB platform.Experimental results show that the difference of SOC prediction and actual SOC is below 3%.The model can reflect the characteristics curve of the battery. SOC estimation algorithm can meet the requirements for precision. The results have a high practical value.
文摘A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)balancing strategy with a reduced switching-frequency(RSF)is proposed in this paper.The proposed RSF algorithm not only reduces the switching losses,but also features good balancing performance both in the unbalanced and balanced initial states.The results are verified by extensive simulations in MATLAB/Simulink surroundings.
文摘考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。