Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 a...Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 adaptive control, a novel Nonlinear State Space Equation(NSSE) based Adaptive neural network Control(NSSE-AC) method is proposed for the turbo-shaft engine control system design. The proposed NSSE model is derived from a special neural network with an extra layer, and the rotor speed of the gas turbine is taken as the main state variable which makes the NSSE model be able to capture the system dynamic better than the NARMA-L2 model. A hybrid Recursive Least-Square and Levenberg-Marquardt(RLS-LM) algorithm is advanced to perform the online learning of the neural network, which further enhances both the accuracy of the NSSE model and the performance of the adaptive controller. The feedback correction is also utilized in the NSSE-AC system to eliminate the steady-state tracking error. Simulation results show that, compared with the NARMA-L2 model, the NSSE model of the turboshaft engine is more accurate. The maximum modeling error is decreased from 5.92% to 0.97%when the LM algorithm is introduced to optimize the neural network parameters. The NSSE-AC method can not only achieve a better main control loop performance than the traditional controller but also limit all the constraint parameters efficiently with quick and accurate switching responses even if component degradation exists. Thus, the effectiveness of the NSSE-AC method is validated.展开更多
In this topic, a new. approach to the analysis of time-variation dynamics is proposed by use of Legendre series expansion and Legendre integral operator matrix. The theoretical basis for effective solution of time-var...In this topic, a new. approach to the analysis of time-variation dynamics is proposed by use of Legendre series expansion and Legendre integral operator matrix. The theoretical basis for effective solution of time-variation dynamics is therefore established, which is beneficial to further research of time-variation science.展开更多
基金co-supported by the National Science and Technology Major Project, China (No. J2019-Ⅰ-0010-0010)the Project funded by China Postdoctoral Science Foundation (No. 2021M701692)+3 种基金the Fundamental Research Funds for the Central Universities, China (No. NS2022029)the Postgraduate Research & Practice Innovation Program of NUAA, China (No. xcxjh20220206)the National Natural Science Foundation of China (No. 51976089)Jiangsu Funding Program for Excellent Postdoctoral Talent, China (No. 2022ZB202)。
文摘Intelligent Adaptive Control(AC) has remarkable advantages in the control system design of aero-engine which has strong nonlinearity and uncertainty. Inspired by the Nonlinear Autoregressive Moving Average(NARMA)-L2 adaptive control, a novel Nonlinear State Space Equation(NSSE) based Adaptive neural network Control(NSSE-AC) method is proposed for the turbo-shaft engine control system design. The proposed NSSE model is derived from a special neural network with an extra layer, and the rotor speed of the gas turbine is taken as the main state variable which makes the NSSE model be able to capture the system dynamic better than the NARMA-L2 model. A hybrid Recursive Least-Square and Levenberg-Marquardt(RLS-LM) algorithm is advanced to perform the online learning of the neural network, which further enhances both the accuracy of the NSSE model and the performance of the adaptive controller. The feedback correction is also utilized in the NSSE-AC system to eliminate the steady-state tracking error. Simulation results show that, compared with the NARMA-L2 model, the NSSE model of the turboshaft engine is more accurate. The maximum modeling error is decreased from 5.92% to 0.97%when the LM algorithm is introduced to optimize the neural network parameters. The NSSE-AC method can not only achieve a better main control loop performance than the traditional controller but also limit all the constraint parameters efficiently with quick and accurate switching responses even if component degradation exists. Thus, the effectiveness of the NSSE-AC method is validated.
文摘In this topic, a new. approach to the analysis of time-variation dynamics is proposed by use of Legendre series expansion and Legendre integral operator matrix. The theoretical basis for effective solution of time-variation dynamics is therefore established, which is beneficial to further research of time-variation science.