期刊文献+
共找到1,460篇文章
< 1 2 73 >
每页显示 20 50 100
Attitude controller for reentry vehicles using state-dependent Riccati equation method 被引量:3
1
作者 谢道成 王中伟 张为华 《Journal of Central South University》 SCIE EI CAS 2013年第7期1861-1867,共7页
To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated.... To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°. 展开更多
关键词 reentry vehicle attitude controller nonlinear control state-dependent riccati equation Schur algorithm trackingperformance
下载PDF
Solution of the HJI equations for nonlinear H_∞ control design by state-dependent Riccati equations approach 被引量:1
2
作者 Xueyan Zhao Feiqi Deng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期654-660,共7页
The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix ... The relationship between the technique by state- dependent Riccati equations (SDRE) and Hamilton-Jacobi-lsaacs (HJI) equations for nonlinear H∞ control design is investigated. By establishing the Lyapunov matrix equations for partial derivates of the solution of the SDREs and introducing symmetry measure for some related matrices, a method is proposed for examining whether the SDRE method admits a global optimal control equiva- lent to that solved by the HJI equation method. Two examples with simulation are given to illustrate the method is effective. 展开更多
关键词 nonlinear system robust control Hamilton-Jacobi-Isaacs (HJI) equation state-dependent riccati equation (SDRE) global stabilization optimal control.
下载PDF
Matrix Riccati Equations in Optimal Control
3
作者 Malick Ndiaye 《Applied Mathematics》 2024年第3期199-213,共15页
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho... In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control. 展开更多
关键词 Optimal Control Matrix riccati equation Change of Variable
下载PDF
Exponential Nonlinear Observer Based on the Differential State-dependent Riccati Equation 被引量:4
4
作者 Hossein Beikzadeh Hamid D.Taghirad 《International Journal of Automation and computing》 EI 2012年第4期358-368,共11页
This paper presents a novel nonlinear continuous-time observer based on the differential state-dependent Riccati equation (SDRE) filter with guaranteed exponential stability. Although impressive results have rapidly e... This paper presents a novel nonlinear continuous-time observer based on the differential state-dependent Riccati equation (SDRE) filter with guaranteed exponential stability. Although impressive results have rapidly emerged from the use of SDRE designs for observers and filters, the underlying theory is yet scant and there remain many unanswered questions such as stability and convergence. In this paper, Lyapunov stability analysis is utilized in order to obtain the required conditions for exponential stability of the estimation error dynamics. We prove that under specific conditions, the proposed observer is at least locally exponentially stable. Moreover, a new definition of a detectable state-dependent factorization is introduced, and a close relation between the uniform detectability of the nonlinear system and the boundedness property of the state-dependent differential Riccati equation is established. Furthermore, through a simulation study of a second order nonlinear model, which satisfies the stability conditions, the promising performance of the proposed observer is demonstrated. Finally, in order to examine the effectiveness of the proposed method, it is applied to the highly nonlinear flux and angular velocity estimation problem for induction machines. The simulation results verify how effectively this modification can increase the region of attraction and the observer error decay rate. 展开更多
关键词 DETECTABILITY direct method of Lyapunov exponential stability nonlinear observer region of attraction state-dependent riccati equation (SDRE) technique
原文传递
Long-Time Behavior of Solution for Autonomous Suspension Bridge Equations with State-Dependent Delay
5
作者 Suping Wang Qiaozhen Ma Xukui Shao 《Engineering(科研)》 2023年第10期632-646,共15页
This work is devoted to the following suspension bridge with state-dependent delay: . The main goal of this paper is to investigate the long-time behavior of the system. Under suitable hypothesis, the quasi-stability ... This work is devoted to the following suspension bridge with state-dependent delay: . The main goal of this paper is to investigate the long-time behavior of the system. Under suitable hypothesis, the quasi-stability estimates of the system are established, based on which the existence of global attractor with finite fractal dimension is obtained. Furthermore, the existence of exponential attractor is proved. 展开更多
关键词 Suspension Bridge equation state-dependent Delay Global Attractor Exponential Attractor Quasi-Stability
下载PDF
THE ASYMPTOTIC BEHAVIOR AND OSCILLATION FOR A CLASS OF THIRD-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS
6
作者 黄先勇 邓勋环 王其如 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期925-946,共22页
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe... In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results. 展开更多
关键词 nonlinear delay dynamic equations NONOSCILLATION asymptotic behavior Philostype oscillation criteria generalized riccati transformation
下载PDF
An Extended Riccati Equation Method to Find New Solitary Wave Solutions of the Burgers-Fisher Equation
7
作者 Yixinni Liu Hongyan Pan 《Open Journal of Applied Sciences》 2023年第8期1418-1432,共15页
In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is cruci... In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is crucial for addressing challenges in fluid, chemical kinetics and population dynamics. We tackle this task by employing the Riccati equation and employing various function transformations to solve the Burgers-Fisher equation. By adopting different coefficients in the Riccati equation, we obtain a wide range of exact solutions, many of which have not been previously documented. These abundant solitary wave solutions serve as valuable tools for comprehending the Burgers-Fisher equation and contribute to expanding our knowledge in this field. 展开更多
关键词 Solitary Wave SOLITON Burger-Fisher equation riccati equation Nonlinear Evolution equation
下载PDF
New application to Riccati equation 被引量:4
8
作者 套格图桑 斯仁道尔吉 李姝敏 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期88-95,共8页
To seek new infinite sequence of exact solutions to nonlinear evolution equations, this paper gives the formula of nonlinear superposition of the solutions and Backlund transformation of Riccati equation. Based on tan... To seek new infinite sequence of exact solutions to nonlinear evolution equations, this paper gives the formula of nonlinear superposition of the solutions and Backlund transformation of Riccati equation. Based on tanh-function expansion method and homogenous balance method, new infinite sequence of exact solutions to Zakharov-Kuznetsov equation, Karamotc-Sivashinsky equation and the set of (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations are obtained with the aid of symbolic computation system Mathematica. The method is of significance to construct infinite sequence exact solutions to other nonlinear evolution equations. 展开更多
关键词 riccati equation formula of nonlinear superposition nonlinear evolution equation exact solution
下载PDF
New Exact Travelling Wave Solutions for Generalized Zakharov-Kuzentsov EquationsUsing General Projective Riccati Equation Method 被引量:14
9
作者 CHENYong LIBiao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第1期1-6,共6页
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg... Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions. 展开更多
关键词 projective riccati equation method generalized Zakharov-Kuzentsov equation exact solutions
下载PDF
An Integral Collocation Approach Based on Legendre Polynomials for Solving Riccati, Logistic and Delay Differential Equations 被引量:4
10
作者 M. M. Khader A. M. S. Mahdy M. M. Shehata 《Applied Mathematics》 2014年第15期2360-2369,共10页
In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equat... In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes. 展开更多
关键词 INTEGRAL COLLOCATION FORMULATION Spectral Method riccati LOGISTIC and Delay Differential equations
下载PDF
Improved precise integration method for differential Riccati equation 被引量:4
11
作者 高强 谭述君 +1 位作者 钟成勰 张洪武 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第1期1-14,共14页
An improved precise integration method (IPIM) for solving the differential Riccati equation (DRE) is presented. The solution to the DRE is connected with the exponential of a Hamiltonian matrix, and the precise in... An improved precise integration method (IPIM) for solving the differential Riccati equation (DRE) is presented. The solution to the DRE is connected with the exponential of a Hamiltonian matrix, and the precise integration method (PIM) for solving the DRE is connected with the scaling and squaring method for computing the exponential of a matrix. The error analysis of the scaling and squaring method for the exponential of a matrix is applied to the PIM of the DRE. Based ,on the error analysis, the criterion for choosing two parameters of the PIM is given. Three kinds of IPIMs for solving the DRE are proposed. The numerical examples machine accuracy solutions. show that the IPIM is stable and gives the 展开更多
关键词 differential riccati equation (DRE) precise integration method (PIM) exponential of matrix error analysis
下载PDF
New Exact Solutions for Konopelchenko-Dubrovsky Equation Using an Extended Riccati Equation Rational Expansion Method 被引量:5
12
作者 SONG Li-Na ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5期I0003-I0003,770-776,共8页
Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by u... Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations. 展开更多
关键词 Konopelchenko-Dubrovsky equation extended riccati equation rational expansion method nonlinear partial differential equation or equations
下载PDF
ON EXISTENCE OF SOLUTIONS OF DIFFERENCE RICCATI EQUATION 被引量:1
13
作者 Zongxuan CHEN Kwang Ho SHON 《Acta Mathematica Scientia》 SCIE CSCD 2019年第1期139-147,共9页
Consider the difference Riccati equation f(z+1) =(A(z)f(z)+B(z))/(C(z)f(z)+D(z)),where A,B, C,D are meromorphic functions, we give its solution family with one-parameter H(f(z))={f_0(z),f(z)=((f_1(z)-f_0(z))(f_2(z)-f_... Consider the difference Riccati equation f(z+1) =(A(z)f(z)+B(z))/(C(z)f(z)+D(z)),where A,B, C,D are meromorphic functions, we give its solution family with one-parameter H(f(z))={f_0(z),f(z)=((f_1(z)-f_0(z))(f_2(z)-f_0(z)))/(Q(z)(f_2(z)-f_1(z))+(f_2(z)-f_0(z)))}, where Q(z) is any constant in C or any periodic meromorphic function with period 1, and f_0(z),f_1(z),f_2(z) are its three distinct meromorphic solutions. 展开更多
关键词 DIFFERENCE riccati equation solution FAMILY order of GROWTH
下载PDF
The projective Riccati equation expansion method and variable separation solutions for the nonlinear physical differential equation in physics 被引量:1
14
作者 马正义 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第7期1848-1854,共7页
Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitr... Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the variable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakon-like semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated. 展开更多
关键词 projective riccati equation nonlinear physical equation variable separation solution SOLITON
下载PDF
RICCATI-TYPE RESULT FOR MEROMORPHIC SOLUTIONS OF SYSTEMS OF COMPOSITE FUNCTIONAL EQUATIONS 被引量:1
15
作者 高凌云 刘曼莉 《Acta Mathematica Scientia》 SCIE CSCD 2017年第6期1685-1694,共10页
By use of Nevanlinna value distribution theory, we will investigate the properties of meromorphic solutions of two types of systems of composite functional equations and obtain some results. One of the results we get ... By use of Nevanlinna value distribution theory, we will investigate the properties of meromorphic solutions of two types of systems of composite functional equations and obtain some results. One of the results we get is about both components of meromorphic solutions on the system of composite functional equations satisfying Riccati differential equation, the other one is property of meromorphic solutions of the other system of composite functional equations while restricting the growth. 展开更多
关键词 riccati equations meromorphic solutions composite functional equations
下载PDF
The Integrable Conditions of Riccati Differential Equation 被引量:3
16
作者 赵临龙 《Chinese Quarterly Journal of Mathematics》 CSCD 1999年第3期67-70, ,共4页
In this paper,the new integrable conditions of Riccati equation is presented by invarant of Riccati equation.
关键词 riccati equation INVARIANT integrable conditons
下载PDF
Extended Riccati Equation Rational Expansion Method and Its Application to Nonlinear Stochastic Evolution Equations 被引量:2
17
作者 WANG Mei-Jiao WANG Qi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5期785-789,共5页
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const... In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations. 展开更多
关键词 extended riccati equation rational expansion method nonlinear stochastic evolution equation stochastic mKdV equation soliton-like solutions
下载PDF
Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations
18
作者 刘希忠 李界通 俞军 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期313-319,共7页
Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of t... Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new B?cklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated. 展开更多
关键词 (3+1)-dimensional shallow water wave equation residual symmetry consistent riccati expansion
下载PDF
Extended Generalized Riccati Equation Mapping for Thermal Traveling-Wave Distribution in Biological Tissues through a Bio-Heat Transfer Model with Linear/Quadratic Temperature-Dependent Blood Perfusion 被引量:1
19
作者 Emmanuel Kengne Fathi Ben Hamouda Ahmed Lakhssassi 《Applied Mathematics》 2013年第10期1471-1484,共14页
Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended g... Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues. 展开更多
关键词 Bio-Heat Transfer Pennes Bio-Heat Model TEMPERATURE-DEPENDENT Blood Perfusion Thermal Therapy EXTENDED GENERALIZED riccati equation MAPPING Method
下载PDF
Application of Extended Projective Riccati Equation Method to(2+1)-Dimensional Broer-Kaup-Kupershmidt System 被引量:1
20
作者 LU Bin ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第10期814-820,共7页
In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro... In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations. 展开更多
关键词 nonlinear- partial differential equations extended projective riccati equation method exact solutions Broer- Kaup Kupershmidt system
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部