期刊文献+
共找到860,799篇文章
< 1 2 250 >
每页显示 20 50 100
The Empirical Analysis on the Dynamic Effect of Rural-urban Migration on the Consumption Growth of Residents in China——Based on Varying Parameter State-space Model 被引量:1
1
作者 邹小芳 《Agricultural Science & Technology》 CAS 2016年第2期471-475,共5页
The research constructed varying parameter state-space model and per- formed estimation on dynamic relationship between urban-rural migration and aggre- gate consumption expenditure on basis of dual economic structure... The research constructed varying parameter state-space model and per- formed estimation on dynamic relationship between urban-rural migration and aggre- gate consumption expenditure on basis of dual economic structure. The results showed that urban consumption growth made the most contribution to aggregate consumption growth, followed by urban-rural migration caused consumption. The role of rural consumption growth kept stable, but consumption caused by population growth was decreasing. Therefore, China consumption growth mainly relies on urban consumption expenditure and urban-rural migration. 展开更多
关键词 Rural-urban migration Household consumption expenditure URBANIZATION state-space model
下载PDF
An Improved Time Domain Approach for Analysis of Floating Bridges Based on Dynamic Finite Element Method and State-Space Model 被引量:1
2
作者 XIANG Sheng CHENG Bin +1 位作者 ZHANG Feng-yu TANG Miao 《China Ocean Engineering》 SCIE EI CSCD 2022年第5期682-696,共15页
The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the ... The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the complicated fluid-solid coupling effects of wind and wave.In this research,a novel time domain approach combining dynamic finite element method and state-space model(SSM)is established for the refined analysis of floating bridges.The dynamic coupled effects induced by wave excitation load,radiation load and buffeting load are carefully simulated.High-precision fitted SSMs for pontoons are established to enhance the calculation efficiency of hydrodynamic radiation forces in time domain.The dispersion relation is also introduced in the analysis model to appropriately consider the phase differences of wave loads on pontoons.The proposed approach is then employed to simulate the dynamic responses of a scaled floating bridge model which has been tested under real wind and wave loads in laboratory.The numerical results are found to agree well with the test data regarding the structural responses of floating bridge under the considered environmental conditions.The proposed time domain approach is considered to be accurate and effective in simulating the structural behaviors of floating bridge under typical environmental conditions. 展开更多
关键词 floating bridge time domain analysis dynamic analysis state-space model environmental load
下载PDF
Recursive State-space Model Identification of Non-uniformly Sampled Systems Using Singular Value Decomposition 被引量:2
3
作者 王宏伟 刘涛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1268-1273,共6页
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co... In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method. 展开更多
关键词 Non-uniformly sampling system state-space model IDENTIFICATION SINGULAR value decomposition RECURSIVE algorithm
下载PDF
A Study on the Factors Influencing the Income Gap between Urban and Rural Areas Based on State-space Model 被引量:2
4
作者 Xiaofang ZOU Xueqin JIANG 《Asian Agricultural Research》 2014年第9期1-6,共6页
The increasingly widening income gap between urban and rural areas is affected by many factors. Using the stepwise regression analysis,we find that urbanization level,socio-economic development,education level,financi... The increasingly widening income gap between urban and rural areas is affected by many factors. Using the stepwise regression analysis,we find that urbanization level,socio-economic development,education level,financial development scale and financial development efficiency have the greatest impact on the income gap between urban and rural areas. By cointegration test,it is found that there is a long-term equilibrium relationship between these five variables and the income gap between urban and rural areas. We build the state-space model to research the dynamic impact of these factors on the income gap between urban and rural areas. The results show that by improving the level of urbanization,we can effectively narrow the income gap between urban and rural areas,while socio-economic development,the improvement of education level,expansion of financial development scale and financial development efficiency all significantly expand the income gap between urban and rural areas. 展开更多
关键词 INCOME GAP BETWEEN URBAN and RURAL areas State-spa
下载PDF
Least Squares Matrix Algorithm for State-Space Modelling of Dynamic Systems
5
作者 Juuso T. Olkkonen Hannu Olkkonen 《Journal of Signal and Information Processing》 2011年第4期287-291,共5页
This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation.... This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation. The state transition matrix is updated without the use of any forgetting function. This yields a robust estimation of model parameters in the presence of noise. The computational complexity of the LSM algorithm is comparable to the speed of the conventional recursive least squares (RLS) algorithm. The knowledge of the state transition matrix enables feasible numerical operators such as interpolation, fractional differentiation and integration. The usefulness of the LSM algorithm was proved in the analysis of the neuroelectric signal waveforms. 展开更多
关键词 state-space modelLING DYNAMIC SYSTEM Analysis EEG
下载PDF
PEMFC Identification Based on a Fractional-Order Hammerstein State-Space Model with ADE-BH Optimization
6
作者 Qin Hao Qi Zhidong +1 位作者 Ye Weiqin Sun Chengshuo 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期155-164,共10页
Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to ... Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process. 展开更多
关键词 PEMFC Hammerstein model Fractional subspace identification ADE-BH optimization
下载PDF
Improved State-space Modelling for Microgrids Without Virtual Resistances
7
作者 Paranagamage S.A.Peiris Shaahin Filizadeh Dharshana Muthumuni 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期584-596,共13页
Power converters and their interfacing networks are often treated as modular state-space blocks for small-signal stability studies in microgrids;they are interconnected by matching the input and output states of the n... Power converters and their interfacing networks are often treated as modular state-space blocks for small-signal stability studies in microgrids;they are interconnected by matching the input and output states of the network and converters.Virtual resistors have been widely used in existing models to generate a voltage for state-space models of the network that require voltage inputs.This paper accurately quantifies the adverse impacts of adding the virtual resistance and proposes an alternative method for network modelling that eliminates the requirement of the virtual resistor when interfacing converters with microgrids.The proposed nonlinear method allows initialization,time-domain simulations of the nonlinear model,and linearization and eigenvalue generation.A numerically linearized small-signal model is used to generate eigenvalues and is compared with the eigenvalues generated using the existing modelling method with virtual resistances.Deficiencies of the existing method and improvements offered by the proposed modelling method are clearly quantified.Electromagnetic transient(EMT)simulations using detailed switching models are used for validation of the proposed modelling method. 展开更多
关键词 Low-voltage converter state-space modelling dynamic phasor time-domain simulation eigenvalue analysis
原文传递
Tracking of time-evolving sound speed profiles with an auto-regressive state-space model 被引量:4
8
作者 JIN Liling LI Jianlong XU Wen 《Chinese Journal of Acoustics》 CSCD 2017年第3期302-312,共11页
An approach for time-evolving sound speed profiles tracking in shallow water is discussed. The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem, which includes a state equ... An approach for time-evolving sound speed profiles tracking in shallow water is discussed. The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem, which includes a state equation for predicting the time-evolving sound speed profile and a measurement equation for incorporating local acoustic measurements. In the paper, auto-regression (AR) method is introduced to obtain a high-order AR evolution model of the sound speed field time variations, and the ensemble Kalman filter is utilized to track the sound speed field. To validate the approach, the accuracy in sound speed estimation is analyzed via a numerical implementation using the ASIAEX experimental environment and the sound velocity measurement data. Compared with traditional approaches based on the state evolution represented as a random walk, simulation results show the proposed AR method can effectively reduce the tracking errors of sound speed, and still keep good tracking performance at low signal-to-noise ratios. 展开更多
关键词 TIME Tracking of time-evolving sound speed profiles with an auto-regressive state-space model SSP ENKF AR
原文传递
STATE-SPACE MODELLING OF DYNAMIC SYSTEMS IN OCEAN ENGINEERING 被引量:2
9
作者 JohannesFalnes 《Journal of Hydrodynamics》 SCIE EI CSCD 1998年第1期1-17,共17页
Pertaining to dynamic systems in general, a review is given of relations between mathematical descriptions in the frequency domain or time domain and state-space descriptions. For the analysis of hydrodynamic problems... Pertaining to dynamic systems in general, a review is given of relations between mathematical descriptions in the frequency domain or time domain and state-space descriptions. For the analysis of hydrodynamic problems in ocean engineering wave forces may be represented by convolution integrals. The paper presents a method to construct a finite-order state-space model which represents a good approximation to such a convolution integral. The method utilizes a particular algorithm to compute the partial derivative of the exponential function of a (state-space) matrix with respect to the matrix elements. The method is applied to an example of fitting a state space model of order five to the free oscillations corresponding to wave radiation in a transient experiment with an oscillating water column. 展开更多
关键词 wave forces SIMULATION state-space model least-square method oscillating water column heave motion
全文增补中
Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method 被引量:9
10
作者 Zhiyu NI Jinguo LIU +1 位作者 Zhigang WU Xinhui SHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期513-530,共18页
The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model fo... The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method. 展开更多
关键词 Flexible space manipulator LINEARIZATION PARAMETER IDENTIFICATION state-space model SUBSPACE methods
原文传递
Aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders:progress of experimental models based on disease pathogenesis
11
作者 Li Xu Huiming Xu Changyong Tang 《Neural Regeneration Research》 SCIE CAS 2025年第2期354-365,共12页
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem... Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials. 展开更多
关键词 AQUAPORIN-4 experimental model neuromyelitis optica spectrum disorder PATHOGENESIS
下载PDF
Exploiting fly models to investigate rare human neurological disorders
12
作者 Tomomi Tanaka Hyung-Lok Chung 《Neural Regeneration Research》 SCIE CAS 2025年第1期21-28,共8页
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio... Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases. 展开更多
关键词 ACOX1 Drosophila melanogaster GLIA lipid metabolism model organisms NEUROINFLAMMATION neurologic disorders NEURON rare disease VLCFA
下载PDF
A promising approach for quantifying focal stroke modeling and assessing stroke progression:optical resolution photoacoustic microscopy photothrombosis
13
作者 Xiao Liang Xingping Quan +6 位作者 Xiaorui Geng Yujing Huang Yonghua Zhao Lei Xi Zhen Yuan Ping Wang Bin Liu 《Neural Regeneration Research》 SCIE CAS 2025年第7期2029-2037,共9页
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me... To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes. 展开更多
关键词 AGE-DEPENDENT cerebral cortex ischemic stroke mouse model optical coherence tomography angiography photoacoustic microscopy PHOTOTHROMBOSIS vascular imaging
下载PDF
Harmonic State-Space Based AC-Side Impedance Model of MMC and High Frequency Oscillation Characteristics Analysis
14
作者 Hui Fang Jingsen Zhou +3 位作者 Haozheng Wang Yanxu Wang Hongji Xiang Yechun Xin 《Energy Engineering》 EI 2023年第4期831-849,共19页
Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses t... Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses the harmonic state-space(HSS)method to establish a detailed frequency domain impedance model of the AC-side of the HVDC transmission system,which considers the internal dynamic characteristics.In addition,the suggested model is also used to assess the system’s high-frequency oscillationmechanism,and the effects of the MMC current inner loop control,feedforward voltage links,and control delay on the high-frequency impedance characteristics and the effect of higher harmonic components.Finally,three oscillation suppression schemes are analyzed for the oscillation problems occurring in actual engineering,and a simplified impedance model considering only the highfrequency impedance characteristics is established to compare the suppression effect with the detailed impedance model to prove its reliability. 展开更多
关键词 Modular multilevel converter impedance modeling small-signal stability suppression strategy
下载PDF
Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology
15
作者 Yiyang Qin Wenzhen Zhu +6 位作者 Tingting Guo Yiran Zhang Tingting Xing Peng Yin Shihua Li Xiao-Jiang Li Su Yang 《Neural Regeneration Research》 SCIE CAS 2025年第9期2655-2666,共12页
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r... Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy. 展开更多
关键词 androgen receptor mesencephalic astrocyte-derived neurotrophic factor mouse model NEURODEGENERATION neuronal loss neurotrophic factor polyglutamine disease protein misfolding spinal and bulbar muscular atrophy transcription factor
下载PDF
Proactive traffic responsive control based on state-space neural network and extended Kalman filter 被引量:3
16
作者 过秀成 李岩 杨洁 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期466-470,共5页
The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagg... The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency. 展开更多
关键词 state-space neural network extended Kalman filter traffic responsive control timing plan traffic state prediction
下载PDF
采用STAMP-24Model的多组织事故分析
17
作者 曾明荣 秦永莹 +2 位作者 刘小航 栗婧 尚长岭 《安全与环境学报》 CAS CSCD 北大核心 2024年第7期2741-2750,共10页
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事... 安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。 展开更多
关键词 安全工程 系统理论事故建模与过程模型(STAMP) 24model 多组织事故 原因分析
下载PDF
基于改进24Model-ISM-SNA建筑工人不安全行为关联路径研究
18
作者 赵平 刘钰 +1 位作者 靳丽艳 王佳慧 《工业安全与环保》 2024年第7期37-40,共4页
建筑施工现场环境复杂,为有效控制不安全行为发生,基于行为安全“2-4”模型对360份具有代表性的建筑安全事故调查报告进行分析,提取出22个不安全行为的主要影响因素。利用灰色关联分析方法(GRA)改进的集成ISM-SNA模型,将不安全行为风险... 建筑施工现场环境复杂,为有效控制不安全行为发生,基于行为安全“2-4”模型对360份具有代表性的建筑安全事故调查报告进行分析,提取出22个不安全行为的主要影响因素。利用灰色关联分析方法(GRA)改进的集成ISM-SNA模型,将不安全行为风险因素划分为表层、过渡层与深层,然后对风险因素进行可视化分析、中心度分析及凝聚子群分析,揭示了各致因因素间的关联关系和传导路径。结果表明,建筑工人不安全行为影响因素可划分成7级3阶的多级递阶结构,安全意识、现场监管、外部环境是建筑工人不安全行为的关键影响因素,同时现场监管和隐患排查到位能有效降低不安全行为的发生。 展开更多
关键词 建筑工人 不安全行为 24model 解释结构模型(ISM) 社会网络分析(SNA)
下载PDF
基于24Model的地铁内涝事故原因分析与评估
19
作者 张江石 胡馨月 +3 位作者 侯轩 李泳暾 李梓萌 高进东 《安全与环境工程》 CAS CSCD 北大核心 2024年第6期111-117,共7页
为降低地铁内涝事故灾害风险,基于事故致因“2-4”模型,分析了地铁内涝事故致灾因子,采用层次分析法构建了地铁内涝事故原因分析指标体系,确定了各风险因子的权重,并利用模糊综合评价法对地铁内涝事故进行了定量评估,识别出关键的影响... 为降低地铁内涝事故灾害风险,基于事故致因“2-4”模型,分析了地铁内涝事故致灾因子,采用层次分析法构建了地铁内涝事故原因分析指标体系,确定了各风险因子的权重,并利用模糊综合评价法对地铁内涝事故进行了定量评估,识别出关键的影响因素。结果表明:地铁内涝事故一级指标中不安全动作与物态因素最重要,其中影响最大的指标包括擅自更改建筑设计、未按照要求检查水位情况、未及时排水、出入口不符合防汛标准等因素;习惯性不安全行为的权重位居第二,表明该指标因素较为重要,同时安全管理体系得分位居第二,表明该指标因素较易发生。对关键指标采取防范措施,可有效降低风险,从而减少地铁内涝事故的发生。 展开更多
关键词 安全工程 地铁内涝 24model 层次分析法 模糊综合评价法
下载PDF
基于24Model-D-ISM的地铁站火灾疏散影响因素研究
20
作者 孙世梅 张家严 《中国安全科学学报》 CAS CSCD 北大核心 2024年第4期153-159,共7页
为预防地铁站火灾事故,深入了解地铁站火灾人员疏散影响因素间的内在联系与层次结构,基于第6版“2-4”模型(24Model)分析63起地铁站火灾疏散事故,充分考虑各个因素之间的交互作用,提取19个影响地铁站人员疏散的关键因素,建立地铁站火灾... 为预防地铁站火灾事故,深入了解地铁站火灾人员疏散影响因素间的内在联系与层次结构,基于第6版“2-4”模型(24Model)分析63起地铁站火灾疏散事故,充分考虑各个因素之间的交互作用,提取19个影响地铁站人员疏散的关键因素,建立地铁站火灾人员疏散影响因素指标体系;采用算子客观赋权法(C-OWA)改进决策试验与评价实验法(DEMATEL),确定地铁站火灾人员疏散的重要影响因素;在此基础上,采用解释结构模型(ISM)分析各个因素间的层次结构及相互作用路径,构建地铁站火灾人员疏散影响因素的多级递阶结构模型。研究结果表明:疏散引导、恐慌从众行为、人员拥挤为地铁站火灾人员疏散的关键影响因素;地铁站火灾人员疏散受表层因素、中间层因素、深层因素共同作用的影响,其中,疏散教育与培训、设施维护与检查、疏散预案等因素是根源影响因素,重视根源影响因素的改善有利于从本质上预防和控制事故的发生。 展开更多
关键词 “2-4”模型(24model) 决策试验与评价实验法(DEMATEL) 解释结构模型(ISM) 地铁站 火灾疏散 影响因素
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部