The research constructed varying parameter state-space model and per- formed estimation on dynamic relationship between urban-rural migration and aggre- gate consumption expenditure on basis of dual economic structure...The research constructed varying parameter state-space model and per- formed estimation on dynamic relationship between urban-rural migration and aggre- gate consumption expenditure on basis of dual economic structure. The results showed that urban consumption growth made the most contribution to aggregate consumption growth, followed by urban-rural migration caused consumption. The role of rural consumption growth kept stable, but consumption caused by population growth was decreasing. Therefore, China consumption growth mainly relies on urban consumption expenditure and urban-rural migration.展开更多
The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the ...The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the complicated fluid-solid coupling effects of wind and wave.In this research,a novel time domain approach combining dynamic finite element method and state-space model(SSM)is established for the refined analysis of floating bridges.The dynamic coupled effects induced by wave excitation load,radiation load and buffeting load are carefully simulated.High-precision fitted SSMs for pontoons are established to enhance the calculation efficiency of hydrodynamic radiation forces in time domain.The dispersion relation is also introduced in the analysis model to appropriately consider the phase differences of wave loads on pontoons.The proposed approach is then employed to simulate the dynamic responses of a scaled floating bridge model which has been tested under real wind and wave loads in laboratory.The numerical results are found to agree well with the test data regarding the structural responses of floating bridge under the considered environmental conditions.The proposed time domain approach is considered to be accurate and effective in simulating the structural behaviors of floating bridge under typical environmental conditions.展开更多
In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are co...In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.展开更多
The increasingly widening income gap between urban and rural areas is affected by many factors. Using the stepwise regression analysis,we find that urbanization level,socio-economic development,education level,financi...The increasingly widening income gap between urban and rural areas is affected by many factors. Using the stepwise regression analysis,we find that urbanization level,socio-economic development,education level,financial development scale and financial development efficiency have the greatest impact on the income gap between urban and rural areas. By cointegration test,it is found that there is a long-term equilibrium relationship between these five variables and the income gap between urban and rural areas. We build the state-space model to research the dynamic impact of these factors on the income gap between urban and rural areas. The results show that by improving the level of urbanization,we can effectively narrow the income gap between urban and rural areas,while socio-economic development,the improvement of education level,expansion of financial development scale and financial development efficiency all significantly expand the income gap between urban and rural areas.展开更多
This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation....This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation. The state transition matrix is updated without the use of any forgetting function. This yields a robust estimation of model parameters in the presence of noise. The computational complexity of the LSM algorithm is comparable to the speed of the conventional recursive least squares (RLS) algorithm. The knowledge of the state transition matrix enables feasible numerical operators such as interpolation, fractional differentiation and integration. The usefulness of the LSM algorithm was proved in the analysis of the neuroelectric signal waveforms.展开更多
Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to ...Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process.展开更多
Power converters and their interfacing networks are often treated as modular state-space blocks for small-signal stability studies in microgrids;they are interconnected by matching the input and output states of the n...Power converters and their interfacing networks are often treated as modular state-space blocks for small-signal stability studies in microgrids;they are interconnected by matching the input and output states of the network and converters.Virtual resistors have been widely used in existing models to generate a voltage for state-space models of the network that require voltage inputs.This paper accurately quantifies the adverse impacts of adding the virtual resistance and proposes an alternative method for network modelling that eliminates the requirement of the virtual resistor when interfacing converters with microgrids.The proposed nonlinear method allows initialization,time-domain simulations of the nonlinear model,and linearization and eigenvalue generation.A numerically linearized small-signal model is used to generate eigenvalues and is compared with the eigenvalues generated using the existing modelling method with virtual resistances.Deficiencies of the existing method and improvements offered by the proposed modelling method are clearly quantified.Electromagnetic transient(EMT)simulations using detailed switching models are used for validation of the proposed modelling method.展开更多
An approach for time-evolving sound speed profiles tracking in shallow water is discussed. The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem, which includes a state equ...An approach for time-evolving sound speed profiles tracking in shallow water is discussed. The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem, which includes a state equation for predicting the time-evolving sound speed profile and a measurement equation for incorporating local acoustic measurements. In the paper, auto-regression (AR) method is introduced to obtain a high-order AR evolution model of the sound speed field time variations, and the ensemble Kalman filter is utilized to track the sound speed field. To validate the approach, the accuracy in sound speed estimation is analyzed via a numerical implementation using the ASIAEX experimental environment and the sound velocity measurement data. Compared with traditional approaches based on the state evolution represented as a random walk, simulation results show the proposed AR method can effectively reduce the tracking errors of sound speed, and still keep good tracking performance at low signal-to-noise ratios.展开更多
Pertaining to dynamic systems in general, a review is given of relations between mathematical descriptions in the frequency domain or time domain and state-space descriptions. For the analysis of hydrodynamic problems...Pertaining to dynamic systems in general, a review is given of relations between mathematical descriptions in the frequency domain or time domain and state-space descriptions. For the analysis of hydrodynamic problems in ocean engineering wave forces may be represented by convolution integrals. The paper presents a method to construct a finite-order state-space model which represents a good approximation to such a convolution integral. The method utilizes a particular algorithm to compute the partial derivative of the exponential function of a (state-space) matrix with respect to the matrix elements. The method is applied to an example of fitting a state space model of order five to the free oscillations corresponding to wave radiation in a transient experiment with an oscillating water column.展开更多
The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model fo...The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein functio...Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses t...Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses the harmonic state-space(HSS)method to establish a detailed frequency domain impedance model of the AC-side of the HVDC transmission system,which considers the internal dynamic characteristics.In addition,the suggested model is also used to assess the system’s high-frequency oscillationmechanism,and the effects of the MMC current inner loop control,feedforward voltage links,and control delay on the high-frequency impedance characteristics and the effect of higher harmonic components.Finally,three oscillation suppression schemes are analyzed for the oscillation problems occurring in actual engineering,and a simplified impedance model considering only the highfrequency impedance characteristics is established to compare the suppression effect with the detailed impedance model to prove its reliability.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagg...The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency.展开更多
安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事...安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。展开更多
基金Supported by Programs for Science and Technology Development of Hubei Rural Practical Talents Team Office(2013LK001)~~
文摘The research constructed varying parameter state-space model and per- formed estimation on dynamic relationship between urban-rural migration and aggre- gate consumption expenditure on basis of dual economic structure. The results showed that urban consumption growth made the most contribution to aggregate consumption growth, followed by urban-rural migration caused consumption. The role of rural consumption growth kept stable, but consumption caused by population growth was decreasing. Therefore, China consumption growth mainly relies on urban consumption expenditure and urban-rural migration.
基金financially supported by the Program of Science and Technology Innovation Action Plan,Shanghai,China(Grant No.20200741600).
文摘The floating bridge bears the dead weight and live load with buoyancy,and has wide application prospect in deep-water transportation infrastructure.The structural analysis of floating bridge is challenging due to the complicated fluid-solid coupling effects of wind and wave.In this research,a novel time domain approach combining dynamic finite element method and state-space model(SSM)is established for the refined analysis of floating bridges.The dynamic coupled effects induced by wave excitation load,radiation load and buffeting load are carefully simulated.High-precision fitted SSMs for pontoons are established to enhance the calculation efficiency of hydrodynamic radiation forces in time domain.The dispersion relation is also introduced in the analysis model to appropriately consider the phase differences of wave loads on pontoons.The proposed approach is then employed to simulate the dynamic responses of a scaled floating bridge model which has been tested under real wind and wave loads in laboratory.The numerical results are found to agree well with the test data regarding the structural responses of floating bridge under the considered environmental conditions.The proposed time domain approach is considered to be accurate and effective in simulating the structural behaviors of floating bridge under typical environmental conditions.
基金Supported in part by the National Thousand Talents Program of Chinathe National Natural Science Foundation of China(61473054)the Fundamental Research Funds for the Central Universities of China
文摘In this paper a recursive state-space model identification method is proposed for non-uniformly sampled systems in industrial applications. Two cases for measuring all states and only output(s) of such a system are considered for identification. In the case of state measurement, an identification algorithm based on the singular value decomposition(SVD) is developed to estimate the model parameter matrices by using the least-squares fitting. In the case of output measurement only, another identification algorithm is given by combining the SVD approach with a hierarchical identification strategy. An example is used to demonstrate the effectiveness of the proposed identification method.
基金Supported by Humanities and Social Sciences Project of the Ministry of Education(10YJC790111)
文摘The increasingly widening income gap between urban and rural areas is affected by many factors. Using the stepwise regression analysis,we find that urbanization level,socio-economic development,education level,financial development scale and financial development efficiency have the greatest impact on the income gap between urban and rural areas. By cointegration test,it is found that there is a long-term equilibrium relationship between these five variables and the income gap between urban and rural areas. We build the state-space model to research the dynamic impact of these factors on the income gap between urban and rural areas. The results show that by improving the level of urbanization,we can effectively narrow the income gap between urban and rural areas,while socio-economic development,the improvement of education level,expansion of financial development scale and financial development efficiency all significantly expand the income gap between urban and rural areas.
文摘This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation. The state transition matrix is updated without the use of any forgetting function. This yields a robust estimation of model parameters in the presence of noise. The computational complexity of the LSM algorithm is comparable to the speed of the conventional recursive least squares (RLS) algorithm. The knowledge of the state transition matrix enables feasible numerical operators such as interpolation, fractional differentiation and integration. The usefulness of the LSM algorithm was proved in the analysis of the neuroelectric signal waveforms.
基金This project is supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX22_0124)the National Natural Science Foundation of China(NO.61374153).
文摘Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process.
基金supported in part by Natural Sciences and Engineering Research Council(NSERC)of Canada,MITACS,Manitoba HVDC Research Center。
文摘Power converters and their interfacing networks are often treated as modular state-space blocks for small-signal stability studies in microgrids;they are interconnected by matching the input and output states of the network and converters.Virtual resistors have been widely used in existing models to generate a voltage for state-space models of the network that require voltage inputs.This paper accurately quantifies the adverse impacts of adding the virtual resistance and proposes an alternative method for network modelling that eliminates the requirement of the virtual resistor when interfacing converters with microgrids.The proposed nonlinear method allows initialization,time-domain simulations of the nonlinear model,and linearization and eigenvalue generation.A numerically linearized small-signal model is used to generate eigenvalues and is compared with the eigenvalues generated using the existing modelling method with virtual resistances.Deficiencies of the existing method and improvements offered by the proposed modelling method are clearly quantified.Electromagnetic transient(EMT)simulations using detailed switching models are used for validation of the proposed modelling method.
基金supported by the National Natural Science Foundation of China(41576103)
文摘An approach for time-evolving sound speed profiles tracking in shallow water is discussed. The inversion of time-evolving sound speed profiles is modeled as a state-space estimation problem, which includes a state equation for predicting the time-evolving sound speed profile and a measurement equation for incorporating local acoustic measurements. In the paper, auto-regression (AR) method is introduced to obtain a high-order AR evolution model of the sound speed field time variations, and the ensemble Kalman filter is utilized to track the sound speed field. To validate the approach, the accuracy in sound speed estimation is analyzed via a numerical implementation using the ASIAEX experimental environment and the sound velocity measurement data. Compared with traditional approaches based on the state evolution represented as a random walk, simulation results show the proposed AR method can effectively reduce the tracking errors of sound speed, and still keep good tracking performance at low signal-to-noise ratios.
文摘Pertaining to dynamic systems in general, a review is given of relations between mathematical descriptions in the frequency domain or time domain and state-space descriptions. For the analysis of hydrodynamic problems in ocean engineering wave forces may be represented by convolution integrals. The paper presents a method to construct a finite-order state-space model which represents a good approximation to such a convolution integral. The method utilizes a particular algorithm to compute the partial derivative of the exponential function of a (state-space) matrix with respect to the matrix elements. The method is applied to an example of fitting a state space model of order five to the free oscillations corresponding to wave radiation in a transient experiment with an oscillating water column.
基金funded by the National Natural Science Foundation of China (Nos. 11572069 and 51775541)the China Postdoctoral Science Foundation (No. 2016M601354)
文摘The on-orbit parameter identification of a space structure can be used for the modification of a system dynamics model and controller coefficients. This study focuses on the estimation of a system state-space model for a two-link space manipulator in the procedure of capturing an unknown object, and a recursive tracking approach based on the recursive predictor-based subspace identification(RPBSID) algorithm is proposed to identify the manipulator payload mass parameter. Structural rigid motion and elastic vibration are separated, and the dynamics model of the space manipulator is linearized at an arbitrary working point(i.e., a certain manipulator configuration).The state-space model is determined by using the RPBSID algorithm and matrix transformation. In addition, utilizing the identified system state-space model, the manipulator payload mass parameter is estimated by extracting the corresponding block matrix. In numerical simulations, the presented parameter identification method is implemented and compared with the classical algebraic algorithm and the recursive least squares method for different payload masses and manipulator configurations. Numerical results illustrate that the system state-space model and payload mass parameter of the two-link flexible space manipulator are effectively identified by the recursive subspace tracking method.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
基金supported by Warren Alpert Foundation and Houston Methodist Academic Institute Laboratory Operating Fund(to HLC).
文摘Rare neurological diseases,while individually are rare,collectively impact millions globally,leading to diverse and often severe neurological symptoms.Often attributed to genetic mutations that disrupt protein function or structure,understanding their genetic basis is crucial for accurate diagnosis and targeted therapies.To investigate the underlying pathogenesis of these conditions,researchers often use non-mammalian model organisms,such as Drosophila(fruit flies),which is valued for their genetic manipulability,cost-efficiency,and preservation of genes and biological functions across evolutionary time.Genetic tools available in Drosophila,including CRISPR-Cas9,offer a means to manipulate gene expression,allowing for a deep exploration of the genetic underpinnings of rare neurological diseases.Drosophila boasts a versatile genetic toolkit,rapid generation turnover,and ease of large-scale experimentation,making it an invaluable resource for identifying potential drug candidates.Researchers can expose flies carrying disease-associated mutations to various compounds,rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and,ultimately,clinical trials.In this comprehensive review,we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis,pathophysiology,and potential therapeutic implications.We discuss rare diseases associated with both neuron-expressed and glial-expressed genes.Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay,mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay,and mutations in IRF2BPL causing seizures,a neurodevelopmental disorder with regression,loss of speech,and abnormal movements.And we explore mutations in EMC1 related to cerebellar atrophy,visual impairment,psychomotor retardation,and gain-of-function mutations in ACOX1 causing Mitchell syndrome.Loss-of-function mutations in ACOX1 result in ACOX1 deficiency,characterized by very-long-chain fatty acid accumulation and glial degeneration.Notably,this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology,offering a platform for the rapid identification of potential therapeutic interventions.Rare neurological diseases involve a wide range of expression systems,and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia.Furthermore,mutations within the same gene may result in varying functional outcomes,such as complete loss of function,partial loss of function,or gain-of-function mutations.The phenotypes observed in patients can differ significantly,underscoring the complexity of these conditions.In conclusion,Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases.By facilitating the modeling of these conditions,Drosophila contributes to a deeper understanding of their genetic basis,pathophysiology,and potential therapies.This approach accelerates the discovery of promising drug candidates,ultimately benefiting patients affected by these complex and understudied diseases.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
基金supported by Research on the Oscillation Mechanism and Suppression Strategy of Yu-E MMC-HVDC Equipment and System(2021Yudian Technology 33#).
文摘Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses the harmonic state-space(HSS)method to establish a detailed frequency domain impedance model of the AC-side of the HVDC transmission system,which considers the internal dynamic characteristics.In addition,the suggested model is also used to assess the system’s high-frequency oscillationmechanism,and the effects of the MMC current inner loop control,feedforward voltage links,and control delay on the high-frequency impedance characteristics and the effect of higher harmonic components.Finally,three oscillation suppression schemes are analyzed for the oscillation problems occurring in actual engineering,and a simplified impedance model considering only the highfrequency impedance characteristics is established to compare the suppression effect with the detailed impedance model to prove its reliability.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金The National Natural Science Foundation of China (No.50422283)the Soft Science Research Project of Ministry of Housing and Urban-Rural Development of China (No.2008-K5-14)
文摘The state-space neural network and extended Kalman filter model is used to directly predict the optimal timing plan that corresponds to futuristic traffic conditions in real time with the purposes of avoiding the lagging of the signal timing plans to traffic conditions. Utilizing the traffic conditions in current and former intervals, the network topology of the state-space neural network (SSNN), which is derived from the geometry of urban arterial routes, is used to predict the optimal timing plan corresponding to the traffic conditions in the next time interval. In order to improve the effectiveness of the SSNN, the extended Kalman filter (EKF) is proposed to train the SSNN instead of conventional approaches. Raw traffic data of the Guangzhou Road, Nanjing and the optimal signal timing plan generated by a multi-objective optimization genetic algorithm are applied to test the performance of the proposed model. The results indicate that compared with the SSNN and the BP neural network, the proposed model can closely match the optimal timing plans in futuristic states with higher efficiency.
文摘安全生产事故往往由多组织交互、多因素耦合造成,事故原因涉及多个组织。为预防和遏制多组织生产安全事故的发生,基于系统理论事故建模与过程模型(Systems-Theory Accident Modeling and Process,STAMP)、24Model,构建一种用于多组织事故分析的方法,并以青岛石油爆炸事故为例进行事故原因分析。结果显示:STAMP-24Model可以分组织,分层次且有效、全面、详细地分析涉及多个组织的事故原因,探究多组织之间的交互关系;对事故进行动态演化分析,可得到各组织不安全动作耦合关系与形成的事故失效链及管控失效路径,进而为预防多组织事故提供思路和参考。